സമചതുരം

Schoolwiki സംരംഭത്തിൽ നിന്ന്

യൂക്ലീഡിയൻ ജ്യാമിതിയിൽ സമചതുരം എന്നാൽ നാലുവശങ്ങൾ തുല്യമായ ഒരു ക്രമബഹുഭുജമാണ്. ഓരോ കോണും 90 ഡിഗ്രി വീതമാണ്. A,B,C,D ഇവ നാലുവശങ്ങളായ സമചതുരത്തെ ABCD എന്ന് സൂചിപ്പിക്കാം.

വർഗ്ഗീകരണം

ചതുർഭുജത്തിന്റെ ഒരു പ്രത്യേകവിഭാഗമാണ് സമചതുരം. ഈ രൂപത്തിന് 4 മട്ടകോണുകളും സമാന്തരവും തുല്യവുമായ എതിർവശങ്ങളും‍ ഉണ്ടായിരിക്കും.

സൂത്രവാക്യങ്ങൾ

നീളം t വശങ്ങളുള്ള ഒരു സമചതുരത്തിന്റെ

  • ചുറ്റളവ് 4t.ആണ്.ഇതിനെ P = 4t. ഇപ്രകാരം സൂചിപ്പിക്കാം.
  • വിസ്തീർണ്ണം t2.അതായത് A = t2

ആദ്യകാലങ്ങളിൽ രണ്ടാംകൃതി വിവരിച്ചിരുന്നത് സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തെ ആസ്പദമാക്കിയായിരുന്നു എന്നതിനാലാണ് സമചതുരത്തിന്റെ ആംഗലേയമായ സ്ക്വയർ എന്ന പദം രണ്ടാംകൃതിയേയും സൂചിപ്പിക്കാനുപയോഗിക്കുന്നത്.

സ്വഭാവങ്ങൾ

  • ഓരോ കോണും 90ഡിഗ്രി വീതമുള്ളവയാണ്‌‍, അതായത് മട്ടകോണുകളാണ്.

ഒരു സമചതുരത്തിലെ വികർണ്ണങ്ങളെല്ലാം തുല്യമാണ്. വിപരീതമായി പറഞ്ഞാൽ ഒരു സമചതുർഭുജത്തിന്റെ വികർണ്ണങ്ങൾ തുല്യമായാൽ അതൊരു സമചതുരമായിരിക്കും. സമചതുരത്തിന്റെ വികർണ്ണം വശത്തിന്റെ നീളത്തിന്റെ √2മടങ്ങായിരിക്കും. ഈ മൂല്യത്തേയാണ് പൈത്തഗോറസ് സ്ഥിരാങ്കം എന്ന് പറയുന്നത്. അഭിന്നകം എന്ന് ആദ്യം തെളിയിക്കപ്പെട്ട സംഖ്യയാണിത്. ചതുരവും സമചതുർഭുജവും ചേർന്ന രൂപമാണ് സമചതുരം.

ചില വസ്തുതകൾ കൂടി

  • നാലുവശങ്ങളും തുല്യമായ സമചതുരത്തിന്റെ കോണുകളുടെ തുക 360ഡിഗ്രി ആണ്.
  • ഒരു വൃത്തം സമചതുരത്തിനു ചുറ്റും വരച്ചാൽ (പരിവൃത്തം)വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 2 മടങ്ങാണ്.
  • ഒരു സമചതുരത്തിൽ അന്തര്വൃത്തം വരച്ചാൽ വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 4 മടങ്ങ് ആണ്.
  • ഒരേ ചുറ്റളവുള്ള ഏതൊരു ചതുർഭുജത്തിനേക്കാളും വിസ്തീർണ്ണം സമചതുരത്തിന് കൂടുതലാണ്.

അവലംബം

http://mathworld.wolfram.com/Square.html


"https://schoolwiki.in/index.php?title=സമചതുരം&oldid=394231" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്