"മിശ്രസംഖ്യ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
(ചെ.) (1 പതിപ്പ്)
 
No edit summary
 
വരി 1: വരി 1:
{{prettyurl|Complex number}}
{{prettyurl|Complex number}}
{{ആധികാരികത}}
{{ആധികാരികത}}
[[ചിത്രം:Complex number illustration.svg|thumb|right|മിശ്ര സംഖ്യകളെ, ആര്‍ഗണ്ട് രേഖാചിത്രത്തില്‍ ഒരു വെക്ടര്‍ രൂപീകരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം]]
[[ചിത്രം:Complex number illustration.svg|thumb|right|മിശ്ര സംഖ്യകളെ, ആർഗണ്ട് രേഖാചിത്രത്തിൽ ഒരു വെക്ടർ രൂപീകരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം]]
[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തില്‍]] [[രേഖീയ സംഖ്യ|രേഖീയ സംഖ്യകളും]] സാങ്കല്‍പിക സംഖ്യകളും ചേര്‍ന്ന സംഖ്യകളെ '''മിശ്ര സംഖ്യകള്‍''' എന്ന് വിളിക്കുന്നു. ഇവയെ '''സമ്മിശ്ര സംഖ്യകള്‍''', '''സങ്കീര്‍ണ്ണസംഖ്യകള്‍''' എന്നിങ്ങനെയും വിളിക്കുന്നു. [[രേഖീയ സംഖ്യ|രേഖീയ സംഖ്യകളുടെ]] വിപുലീകരണമാണ്  മിശ്രസംഖ്യകള്‍. രേഖീയ സംഖ്യയുമായി [[സാങ്കല്‍പിക ഏകകം]] (imaginary unit, i എന്ന അക്ഷരം കൊണ്ട് സൂചിപ്പിക്കുന്നു) അഥവാ അവസ്തവികഘടകം കൂട്ടിച്ചേര്‍ത്താല്‍ മിശ്ര സംഖ്യ ലഭിക്കും. ഇവയില്‍:
[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിൽ]] [[രേഖീയ സംഖ്യ|രേഖീയ സംഖ്യകളും]] സാങ്കൽപിക സംഖ്യകളും ചേർന്ന സംഖ്യകളെ '''മിശ്ര സംഖ്യകൾ''' എന്ന് വിളിക്കുന്നു. ഇവയെ '''സമ്മിശ്ര സംഖ്യകൾ''', '''സങ്കീർണ്ണസംഖ്യകൾ''' എന്നിങ്ങനെയും വിളിക്കുന്നു. [[രേഖീയ സംഖ്യ|രേഖീയ സംഖ്യകളുടെ]] വിപുലീകരണമാണ്  മിശ്രസംഖ്യകൾ. രേഖീയ സംഖ്യയുമായി [[സാങ്കൽപിക ഏകകം]] (imaginary unit, i എന്ന അക്ഷരം കൊണ്ട് സൂചിപ്പിക്കുന്നു) അഥവാ അവസ്തവികഘടകം കൂട്ടിച്ചേർത്താൽ മിശ്ര സംഖ്യ ലഭിക്കും. ഇവയിൽ:
:<math>i^2=-1.\,</math>
:<math>i^2=-1.\,</math>
ആയിരിക്കും.
ആയിരിക്കും.


എല്ലാ മിശ്ര സംഖ്യകളേയും ''a'' + ''bi'' എന്ന രൂപത്തില്‍ എഴുതാം. ഇതില്‍ ''a'', ''b'' എന്നീ രേഖീയ സംഖ്യകള്‍ യഥാക്രമം [[രേഖീയ സംഖ്യാ ഭാഗം]], [[സാങ്കല്‍പിക സംഖ്യാ ഭാഗം]] എന്നിങ്ങനെ അറിയപ്പെടുന്നു. ഉദാഹരണമായി 4 + 7i എന്ന മിശ്ര സംഖ്യയില്‍ 4 രേഖീയ സംഖ്യാ ഭാഗവും 7 സാങ്കല്‍പിക സംഖ്യാ ഭാഗവും ആണ്.
എല്ലാ മിശ്ര സംഖ്യകളേയും ''a'' + ''bi'' എന്ന രൂപത്തിൽ എഴുതാം. ഇതിൽ ''a'', ''b'' എന്നീ രേഖീയ സംഖ്യകൾ യഥാക്രമം [[രേഖീയ സംഖ്യാ ഭാഗം]], [[സാങ്കൽപിക സംഖ്യാ ഭാഗം]] എന്നിങ്ങനെ അറിയപ്പെടുന്നു. ഉദാഹരണമായി 4 + 7i എന്ന മിശ്ര സംഖ്യയിൽ 4 രേഖീയ സംഖ്യാ ഭാഗവും 7 സാങ്കൽപിക സംഖ്യാ ഭാഗവും ആണ്.


മിശ്രസംഖ്യാഗണം [[സങ്കലനം]], [[വ്യവകലനം]], [[ഗുണനം]], [[ഹരണം]] ഇവയടങ്ങിയ ഒരു [[ക്ഷേത്രം(ഗണിതശാസ്ത്രം)|ക്ഷേത്രമാണ്]].
മിശ്രസംഖ്യാഗണം [[സങ്കലനം]], [[വ്യവകലനം]], [[ഗുണനം]], [[ഹരണം]] ഇവയടങ്ങിയ ഒരു [[ക്ഷേത്രം(ഗണിതശാസ്ത്രം)|ക്ഷേത്രമാണ്]].




[[ഗെറൊലമൊ കര്‍ഡാനൊ]] എന്ന [[ഇറ്റലി|ഇറ്റാലിയന്‍]] ഗണിതശാസ്ത്രജ്ഞനാണ് മിശ്ര സംഖ്യകള്‍ എന്ന ആശയം ആദ്യമായി അവതരിപ്പിച്ചത്. [[ത്രിമാനസമവാക്യം|ത്രിമാനസമവാക്യങ്ങളുടെ]] നിര്‍ദ്ധാരണത്തിനിടയില്‍ ഋണസംഖ്യകളുടെ വര്‍ഗ്ഗമൂലങ്ങള്‍ ഉള്‍ക്കൊള്ളുന്ന കണക്കുകൂട്ടലുകള്‍ ആവശ്യമായി വന്നു.ഈ സാഹചര്യമാണ് സമ്മിശ്രസംഖ്യകളുടെ കണ്ടുപിടുത്തത്തിന് കാരണമായത്. [[അടിസ്ഥാന സിദ്ധാന്തം(ബീജഗണിതം)|ബീജഗണിതത്തിലെ അടിസ്ഥാന സിദ്ധാന്തത്തിനും]] തുടര്‍ന്ന് സമ്മിശ്രസംഖ്യകള്‍ ഉപയോഗിച്ച് ഒന്നോ അതിലധികമോ കൃതിയിലുള്ള ബഹുപദസമവാക്യങ്ങള്‍ നിര്‍ദ്ധാരണം ചെയ്യാമെന്ന നിഗമനത്തിലെത്തിച്ചേരാനും ഇത് വഴിയൊരുക്കി..
[[ഗെറൊലമൊ കർഡാനൊ]] എന്ന [[ഇറ്റലി|ഇറ്റാലിയൻ]] ഗണിതശാസ്ത്രജ്ഞനാണ് മിശ്ര സംഖ്യകൾ എന്ന ആശയം ആദ്യമായി അവതരിപ്പിച്ചത്. [[ത്രിമാനസമവാക്യം|ത്രിമാനസമവാക്യങ്ങളുടെ]] നിർദ്ധാരണത്തിനിടയിൽ ഋണസംഖ്യകളുടെ വർഗ്ഗമൂലങ്ങൾ ഉൾക്കൊള്ളുന്ന കണക്കുകൂട്ടലുകൾ ആവശ്യമായി വന്നു.ഈ സാഹചര്യമാണ് സമ്മിശ്രസംഖ്യകളുടെ കണ്ടുപിടുത്തത്തിന് കാരണമായത്. [[അടിസ്ഥാന സിദ്ധാന്തം(ബീജഗണിതം)|ബീജഗണിതത്തിലെ അടിസ്ഥാന സിദ്ധാന്തത്തിനും]] തുടർന്ന് സമ്മിശ്രസംഖ്യകൾ ഉപയോഗിച്ച് ഒന്നോ അതിലധികമോ കൃതിയിലുള്ള ബഹുപദസമവാക്യങ്ങൾ നിർദ്ധാരണം ചെയ്യാമെന്ന നിഗമനത്തിലെത്തിച്ചേരാനും ഇത് വഴിയൊരുക്കി..


സമ്മിശ്രസംഖ്യകള്‍ക്കുള്ള ബീജീയസംക്രിയകള്‍ റഫേല്‍ ബോം‌ബെലി എന്ന ഇറ്റാലിയന്‍ ഗണിതശാസ്ത്രജ്ഞനാണ് ആദ്യമായി നിര്‍വ്വചിച്ചത്.
സമ്മിശ്രസംഖ്യകൾക്കുള്ള ബീജീയസംക്രിയകൾ റഫേൽ ബോം‌ബെലി എന്ന ഇറ്റാലിയൻ ഗണിതശാസ്ത്രജ്ഞനാണ് ആദ്യമായി നിർവ്വചിച്ചത്.
{{Link FA|lmo}}
{{Link FA|lmo}}


{{num-stub|Complex number}}
{{num-stub|Complex number}}


[[വിഭാഗം:ഗണിതം]]
[[വർഗ്ഗം:ഗണിതം]]


[[af:Komplekse getal]]
[[af:Komplekse getal]]
വരി 91: വരി 91:
[[zh-min-nan:Ho̍k-cha̍p-sò͘]]
[[zh-min-nan:Ho̍k-cha̍p-sò͘]]
[[zh-yue:複數]]
[[zh-yue:複數]]
<!--visbot  verified-chils->

10:19, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം

പ്രമാണം:Complex number illustration.svg
മിശ്ര സംഖ്യകളെ, ആർഗണ്ട് രേഖാചിത്രത്തിൽ ഒരു വെക്ടർ രൂപീകരിക്കുന്ന ഒരു ജോഡി സംഖ്യകളായി ചിത്രീകരിക്കാം

ഗണിതശാസ്ത്രത്തിൽ രേഖീയ സംഖ്യകളും സാങ്കൽപിക സംഖ്യകളും ചേർന്ന സംഖ്യകളെ മിശ്ര സംഖ്യകൾ എന്ന് വിളിക്കുന്നു. ഇവയെ സമ്മിശ്ര സംഖ്യകൾ, സങ്കീർണ്ണസംഖ്യകൾ എന്നിങ്ങനെയും വിളിക്കുന്നു. രേഖീയ സംഖ്യകളുടെ വിപുലീകരണമാണ് മിശ്രസംഖ്യകൾ. രേഖീയ സംഖ്യയുമായി സാങ്കൽപിക ഏകകം (imaginary unit, i എന്ന അക്ഷരം കൊണ്ട് സൂചിപ്പിക്കുന്നു) അഥവാ അവസ്തവികഘടകം കൂട്ടിച്ചേർത്താൽ മിശ്ര സംഖ്യ ലഭിക്കും. ഇവയിൽ:

<math>i^2=-1.\,</math>

ആയിരിക്കും.

എല്ലാ മിശ്ര സംഖ്യകളേയും a + bi എന്ന രൂപത്തിൽ എഴുതാം. ഇതിൽ a, b എന്നീ രേഖീയ സംഖ്യകൾ യഥാക്രമം രേഖീയ സംഖ്യാ ഭാഗം, സാങ്കൽപിക സംഖ്യാ ഭാഗം എന്നിങ്ങനെ അറിയപ്പെടുന്നു. ഉദാഹരണമായി 4 + 7i എന്ന മിശ്ര സംഖ്യയിൽ 4 രേഖീയ സംഖ്യാ ഭാഗവും 7 സാങ്കൽപിക സംഖ്യാ ഭാഗവും ആണ്.

മിശ്രസംഖ്യാഗണം സങ്കലനം, വ്യവകലനം, ഗുണനം, ഹരണം ഇവയടങ്ങിയ ഒരു ക്ഷേത്രമാണ്.


ഗെറൊലമൊ കർഡാനൊ എന്ന ഇറ്റാലിയൻ ഗണിതശാസ്ത്രജ്ഞനാണ് മിശ്ര സംഖ്യകൾ എന്ന ആശയം ആദ്യമായി അവതരിപ്പിച്ചത്. ത്രിമാനസമവാക്യങ്ങളുടെ നിർദ്ധാരണത്തിനിടയിൽ ഋണസംഖ്യകളുടെ വർഗ്ഗമൂലങ്ങൾ ഉൾക്കൊള്ളുന്ന കണക്കുകൂട്ടലുകൾ ആവശ്യമായി വന്നു.ഈ സാഹചര്യമാണ് സമ്മിശ്രസംഖ്യകളുടെ കണ്ടുപിടുത്തത്തിന് കാരണമായത്. ബീജഗണിതത്തിലെ അടിസ്ഥാന സിദ്ധാന്തത്തിനും തുടർന്ന് സമ്മിശ്രസംഖ്യകൾ ഉപയോഗിച്ച് ഒന്നോ അതിലധികമോ കൃതിയിലുള്ള ബഹുപദസമവാക്യങ്ങൾ നിർദ്ധാരണം ചെയ്യാമെന്ന നിഗമനത്തിലെത്തിച്ചേരാനും ഇത് വഴിയൊരുക്കി..

സമ്മിശ്രസംഖ്യകൾക്കുള്ള ബീജീയസംക്രിയകൾ റഫേൽ ബോം‌ബെലി എന്ന ഇറ്റാലിയൻ ഗണിതശാസ്ത്രജ്ഞനാണ് ആദ്യമായി നിർവ്വചിച്ചത്.

"https://schoolwiki.in/index.php?title=മിശ്രസംഖ്യ&oldid=394206" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്