"ബഹുപദം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
(ചെ.) (1 പതിപ്പ്)
 
No edit summary
വരി 30: വരി 30:
[[വിഭാഗം:ഗണിതം]]
[[വിഭാഗം:ഗണിതം]]
{{ബീജഗണിതം-അപൂര്‍ണ്ണം|Polynomial}}
{{ബീജഗണിതം-അപൂര്‍ണ്ണം|Polynomial}}
[[af:Polinoom]]
[[ar:كثيرة الحدود]]
[[az:Çoxhədli]]
[[be-x-old:Мнагасклад]]
[[bg:Многочлен]]
[[bn:বহুপদী (গণিত)]]
[[bs:Polinom]]
[[ca:Polinomi]]
[[cs:Polynom]]
[[cv:Полином]]
[[cy:Polynomial]]
[[da:Polynomium]]
[[de:Polynom]]
[[el:Πολυώνυμο]]
[[en:Polynomial]]
[[eo:Polinomo]]
[[es:Polinomio]]
[[eu:Polinomio]]
[[fa:چندجمله‌ای]]
[[fi:Polynomi]]
[[fr:Polynôme]]
[[fy:Mearterm]]
[[gl:Polinomio]]
[[he:פולינום]]
[[hu:Polinom]]
[[is:Margliða]]
[[it:Polinomio]]
[[ja:多項式]]
[[ka:მრავალწევრი]]
[[ko:다항식]]
[[lt:Polinomas]]
[[lv:Polinoms]]
[[nl:Polynoom]]
[[no:Polynom]]
[[pl:Wielomian]]
[[pt:Polinómio]]
[[ro:Polinom]]
[[ru:Многочлен]]
[[sh:Polinom]]
[[simple:Polynomial]]
[[sk:Mnohočlen]]
[[sl:Polinom]]
[[sr:Полином]]
[[sv:Polynom]]
[[th:พหุนาม]]
[[tr:Polinom]]
[[uk:Многочлен]]
[[ur:کثیر رقمی]]
[[vi:Đa thức]]
[[yi:פאלינאם]]
[[zh:多項式]]
[[zh-yue:多項式]]

20:52, 14 ജനുവരി 2010-നു നിലവിലുണ്ടായിരുന്ന രൂപം

ഗണിതശാസ്ത്രത്തില്‍ ഒന്നോ അതിലധികമോ പദങ്ങളുടെ ബീജീയ വ്യഞ്ജനം ആണ് ബഹുപദം(Polynomial). ഒന്നോ അതിലധികമോ ചരങ്ങള്‍ക്കും സ്ഥിരാങ്കങ്ങള്‍ക്കും ഇടയില്‍ ഗണിതസംകാരകങ്ങള്‍ ഉപയോഗിച്ചാണ് ബഹുപദങ്ങള്‍ രൂപപ്പെടുന്നത്.

ബഹുപദ ഫലനം

ബഹുപദത്തെ നിര്‍‌ണ്ണയിയ്ക്കുന്നതിനായി നിര്‍‌വ്വചിയ്ക്കുന്ന ഫലനമാണ് ബഹുപദ ഫലനം.x ചരമായ n കൃതിയുള്ള ഒരു ബഹുപദ ഫലനത്തിന്റെ സാമാന്യ രൂപം

ƒ(x) = an xn+an-1 xn-1+an-2xn-2+........... a0 ഇതാണ്.

an,an-1,an-2..........a0 ഇവ സ്ഥിരാങ്കങ്ങളാണ്.

ബഹുപദ സമവാക്യം

ഒരു ബഹുപദ ഫലനത്തെ മറ്റൊരു ഫലനവുമായി = എന്ന ചിഹ്നമുപയോഗിച്ച് സൂചിപ്പിയ്ക്കുന്നതാണ് ബഹുപദ സമവാക്യം.

ബഹുപദ സമവാക്യത്തിന്റെ സാമാന്യ രൂപം an xn+an-1 xn-1+an-2xn-2+........... a0 =0ഇപ്രകാരമാണ്. ഇവിടെ x എന്ന ചരത്തിന്റെ മൂല്യം നിര്‍‌ണ്ണയിയ്ക്കുന്ന പ്രക്രിയയെ നിര്‍‌ദ്ധാരണം ചെയ്യുക എന്ന് പറയുന്നു.

മൗലിക സ്വഭാവങ്ങള്‍

ബഹുപദങ്ങളുടെ തുക ഒരു ബഹുപദമായിരിയ്ക്കും.

ബഹുപദങ്ങളുടെ ഗുണനഫലം ഒരു ബഹുപദമായിരിയ്ക്കും.

ബഹുപദത്തിന്റെ അവകലജം ബഹുപദമായിരിക്കും.

ബഹുപദത്തിന്റെ സമാകലജം ബഹുപദമായിരിയ്ക്കും.

ബഹുപദം ഉപയോഗിച്ച് സൈന്‍, കൊസൈന്‍, ചരഘാതാങ്കി തുടങ്ങിയ എല്ലാഫലനങ്ങളുടേയും ഏകദേശനം നടത്താം. ഫലകം:ബീജഗണിതം-അപൂര്‍ണ്ണം

"https://schoolwiki.in/index.php?title=ബഹുപദം&oldid=70075" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്