"ലഘുതമ സാധാരണ ഗുണിതം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
No edit summary
No edit summary
 
വരി 1: വരി 1:
രണ്ടു സംഖ്യകളുടെ പൊതുഗുണിതങ്ങളില്‍ ഏറ്റവും ചെറിയ സംഖ്യയെയാണ്‌ '''ലഘുതമ സാധാരണ ഗുണിതം''' അഥവാ '''ല.സാ.ഗു.''' എന്നു പറയുന്നത്‌. അതായത് ഈ രണ്ടു സംഖ്യകളുടെയും ഗുണിതങ്ങളില്‍ ഉള്‍പ്പെടുന്ന പൂജ്യമല്ലാത്ത ഏറ്റവും ചെറിയ സംഖ്യയാണിത്. ("ഇംഗ്ലീഷ്: least common multiple , lowest common multiple (lcm) അഥവാ smallest common multiple) ഉദാഹരണം നാല്‌, ആറ്‌ എന്നീ സംഖ്യകളുടെ ഗുണിതങ്ങള്‍ താഴെ കൊടുക്കുന്നു.
രണ്ടു സംഖ്യകളുടെ പൊതുഗുണിതങ്ങളിൽ ഏറ്റവും ചെറിയ സംഖ്യയെയാണ്‌ '''ലഘുതമ സാധാരണ ഗുണിതം''' അഥവാ '''ല.സാ.ഗു.''' എന്നു പറയുന്നത്‌. അതായത് ഈ രണ്ടു സംഖ്യകളുടെയും ഗുണിതങ്ങളിൽ ഉൾപ്പെടുന്ന പൂജ്യമല്ലാത്ത ഏറ്റവും ചെറിയ സംഖ്യയാണിത്. ("ഇംഗ്ലീഷ്: least common multiple , lowest common multiple (lcm) അഥവാ smallest common multiple) ഉദാഹരണം നാല്‌, ആറ്‌ എന്നീ സംഖ്യകളുടെ ഗുണിതങ്ങൾ താഴെ കൊടുക്കുന്നു.
   
   
4: 4,8,12,16,20,24,28,32,36,40,44,48,52.....
4: 4,8,12,16,20,24,28,32,36,40,44,48,52.....
വരി 5: വരി 5:
6: 6,12,18,24,30,36,42,48,54,...
6: 6,12,18,24,30,36,42,48,54,...


രണ്ടിലും വരുന്ന ഗുണിതങ്ങള്‍ പന്ത്രണ്ട്‌, ഇരുപത്തിനാല്‌, നാല്‍പത്തി എട്ട്‌ എന്നിങ്ങനെയാണെന്നു കാണാം. ഇതില്‍ ഏറ്റവും ചെറിയത്‌ പന്ത്രണ്ട്‌ ആയതിനാല്‍ ഇതിനെ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ലഘുതമ സാധാരണ ഗുണിതം (ല. സാ. ഗു.) എന്നു വിളിക്കുന്നു.  
രണ്ടിലും വരുന്ന ഗുണിതങ്ങൾ പന്ത്രണ്ട്‌, ഇരുപത്തിനാല്‌, നാൽപത്തി എട്ട്‌ എന്നിങ്ങനെയാണെന്നു കാണാം. ഇതിൽ ഏറ്റവും ചെറിയത്‌ പന്ത്രണ്ട്‌ ആയതിനാൽ ഇതിനെ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ലഘുതമ സാധാരണ ഗുണിതം (ല. സാ. ഗു.) എന്നു വിളിക്കുന്നു.  




വരി 11: വരി 11:




അവലോകനത്തിലൂടെ ല സാ ഗു കണക്കാക്കുന്നതാണ്‌ എളുപ്പമുള്ള ആദ്യ വഴി. ഉദാഹരണമായി, മൂന്ന്‌, നാല്‌ എന്നീ സംഖ്യകളുടെ ല സാ ഗു കാണുന്നതിനായി അവയുടെ ഗുണിതങ്ങള്‍ നോക്കുക:  
അവലോകനത്തിലൂടെ ല സാ ഗു കണക്കാക്കുന്നതാണ്‌ എളുപ്പമുള്ള ആദ്യ വഴി. ഉദാഹരണമായി, മൂന്ന്‌, നാല്‌ എന്നീ സംഖ്യകളുടെ ല സാ ഗു കാണുന്നതിനായി അവയുടെ ഗുണിതങ്ങൾ നോക്കുക:  


3: 3,9,12,15
3: 3,9,12,15
വരി 20: വരി 20:
ഇവിടെ 3 x 4 = 12 എന്നു ലഭിക്കുന്നതായി കാണാം.  
ഇവിടെ 3 x 4 = 12 എന്നു ലഭിക്കുന്നതായി കാണാം.  


അതേ സമയം രണ്ടു സംഖ്യകള്‍ക്കും ഘടകകങ്ങള്‍ ഉണ്ടെങ്കില്‍ ഈ രീതി പര്യാപ്തമാവുകയില്ല. അവിടെ രണ്ടു സംഖകളുടെയും [[ഉത്തമ സാധാരണ ഘടകം]] കാണേണ്ടതായി വരുന്നു. ഉദാഹരണമായി, മേല്‍പ്പറഞ്ഞ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ല സാ ഗു തന്നെ എടുത്തു നോക്കാം. രണ്ടു സംഖ്യകളുടെയും ഉത്തമ സാധാരണ ഘടകം (ഉ. സാ. ഘ) കാണുന്നതാണ്‌ ആദ്യ പടി. ഇവിടെ ഉ സാ ഘ രണ്ട്‌ എന്നു ലഭിക്കുന്നു. ഇനി നാലിണ്റ്റെയും ആറിണ്റ്റെയും ഘടകങ്ങളെ ഉ സാ ഘ കൊണ്ട്‌ ഗുണിക്കുന്നു. അതായത്‌,  
അതേ സമയം രണ്ടു സംഖ്യകൾക്കും ഘടകകങ്ങൾ ഉണ്ടെങ്കിൽ ഈ രീതി പര്യാപ്തമാവുകയില്ല. അവിടെ രണ്ടു സംഖകളുടെയും [[ഉത്തമ സാധാരണ ഘടകം]] കാണേണ്ടതായി വരുന്നു. ഉദാഹരണമായി, മേൽപ്പറഞ്ഞ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ല സാ ഗു തന്നെ എടുത്തു നോക്കാം. രണ്ടു സംഖ്യകളുടെയും ഉത്തമ സാധാരണ ഘടകം (ഉ. സാ. ഘ) കാണുന്നതാണ്‌ ആദ്യ പടി. ഇവിടെ ഉ സാ ഘ രണ്ട്‌ എന്നു ലഭിക്കുന്നു. ഇനി നാലിണ്റ്റെയും ആറിണ്റ്റെയും ഘടകങ്ങളെ ഉ സാ ഘ കൊണ്ട്‌ ഗുണിക്കുന്നു. അതായത്‌,  


2 x 2 x 3 = 12
2 x 2 x 3 = 12


== ഉപയോഗങ്ങള്‍ ==
== ഉപയോഗങ്ങൾ ==




[[ഭിന്നസംഖ്യ|‍ഭിന്നസംഖ്യകള്‍]] കൂട്ടുക, കുറയ്ക്കുക, താരതമ്യം ചെയ്യുക എന്നിങ്ങനെയുള്ള ഗണിതക്രിയകള്‍ക്ക് ല.സാ.ഗു. ഉപയോഗിക്കുന്നു.
[[ഭിന്നസംഖ്യ|‍ഭിന്നസംഖ്യകൾ]] കൂട്ടുക, കുറയ്ക്കുക, താരതമ്യം ചെയ്യുക എന്നിങ്ങനെയുള്ള ഗണിതക്രിയകൾക്ക് ല.സാ.ഗു. ഉപയോഗിക്കുന്നു.


[[വര്‍ഗ്ഗം:ഗണിതം]]
[[വർഗ്ഗം:ഗണിതം]]
 
<!--visbot  verified-chils->

10:22, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം

രണ്ടു സംഖ്യകളുടെ പൊതുഗുണിതങ്ങളിൽ ഏറ്റവും ചെറിയ സംഖ്യയെയാണ്‌ ലഘുതമ സാധാരണ ഗുണിതം അഥവാ ല.സാ.ഗു. എന്നു പറയുന്നത്‌. അതായത് ഈ രണ്ടു സംഖ്യകളുടെയും ഗുണിതങ്ങളിൽ ഉൾപ്പെടുന്ന പൂജ്യമല്ലാത്ത ഏറ്റവും ചെറിയ സംഖ്യയാണിത്. ("ഇംഗ്ലീഷ്: least common multiple , lowest common multiple (lcm) അഥവാ smallest common multiple) ഉദാഹരണം നാല്‌, ആറ്‌ എന്നീ സംഖ്യകളുടെ ഗുണിതങ്ങൾ താഴെ കൊടുക്കുന്നു.

4: 4,8,12,16,20,24,28,32,36,40,44,48,52.....

6: 6,12,18,24,30,36,42,48,54,...

രണ്ടിലും വരുന്ന ഗുണിതങ്ങൾ പന്ത്രണ്ട്‌, ഇരുപത്തിനാല്‌, നാൽപത്തി എട്ട്‌ എന്നിങ്ങനെയാണെന്നു കാണാം. ഇതിൽ ഏറ്റവും ചെറിയത്‌ പന്ത്രണ്ട്‌ ആയതിനാൽ ഇതിനെ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ലഘുതമ സാധാരണ ഗുണിതം (ല. സാ. ഗു.) എന്നു വിളിക്കുന്നു.


കണക്കാക്കുന്ന രീതി

അവലോകനത്തിലൂടെ ല സാ ഗു കണക്കാക്കുന്നതാണ്‌ എളുപ്പമുള്ള ആദ്യ വഴി. ഉദാഹരണമായി, മൂന്ന്‌, നാല്‌ എന്നീ സംഖ്യകളുടെ ല സാ ഗു കാണുന്നതിനായി അവയുടെ ഗുണിതങ്ങൾ നോക്കുക:

3: 3,9,12,15

4: 4,8,12,16

ഏറ്റവും കുറഞ്ഞ ഗുണിതം പന്ത്രണ്ട്‌ ആണെന്നു കാണാം. സാമാന്യമായി രണ്ടു സംഖകളുടെയും ഗുണനം നോക്കുന്നതാണ് മറ്റൊരു വഴി. ഇവിടെ 3 x 4 = 12 എന്നു ലഭിക്കുന്നതായി കാണാം.

അതേ സമയം രണ്ടു സംഖ്യകൾക്കും ഘടകകങ്ങൾ ഉണ്ടെങ്കിൽ ഈ രീതി പര്യാപ്തമാവുകയില്ല. അവിടെ രണ്ടു സംഖകളുടെയും ഉത്തമ സാധാരണ ഘടകം കാണേണ്ടതായി വരുന്നു. ഉദാഹരണമായി, മേൽപ്പറഞ്ഞ നാലിണ്റ്റെയും ആറിണ്റ്റെയും ല സാ ഗു തന്നെ എടുത്തു നോക്കാം. രണ്ടു സംഖ്യകളുടെയും ഉത്തമ സാധാരണ ഘടകം (ഉ. സാ. ഘ) കാണുന്നതാണ്‌ ആദ്യ പടി. ഇവിടെ ഉ സാ ഘ രണ്ട്‌ എന്നു ലഭിക്കുന്നു. ഇനി നാലിണ്റ്റെയും ആറിണ്റ്റെയും ഘടകങ്ങളെ ഉ സാ ഘ കൊണ്ട്‌ ഗുണിക്കുന്നു. അതായത്‌,

2 x 2 x 3 = 12

ഉപയോഗങ്ങൾ

‍ഭിന്നസംഖ്യകൾ കൂട്ടുക, കുറയ്ക്കുക, താരതമ്യം ചെയ്യുക എന്നിങ്ങനെയുള്ള ഗണിതക്രിയകൾക്ക് ല.സാ.ഗു. ഉപയോഗിക്കുന്നു.


"https://schoolwiki.in/index.php?title=ലഘുതമ_സാധാരണ_ഗുണിതം&oldid=394248" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്