"അങ്കഗണിതം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം
(പുതിയ താള്: ==എണ്ണല് സംഖ്യ== എണ്ണല് സംഖ്യയെ ഇംഗ്ലീഷില് (Natural number) എന്നു പറയു…) |
No edit summary |
||
വരി 1: | വരി 1: | ||
== | ==എണ്ണൽ സംഖ്യ== | ||
എണ്ണൽ സംഖ്യയെ ഇംഗ്ലീഷിൽ (Natural number) എന്നു പറയും. മലയാളത്തിൽ നിസർഗ്ഗസംഖ്യ, പ്രാകൃതസംഖ്യ എന്നീ പേരുകളുമുണ്ട്. ഇംഗ്ലീഷിൽ Whole number എന്നും പറയുന്നു. 0, 1, 2,...,9 എന്നീ പത്ത് അക്കങ്ങൾകൊണ്ട് ഇവ എഴുതപ്പെടുന്നു. ഇങ്ങനെ എഴുതുമ്പോൾ ഓരോ അക്കത്തിന്റെ സ്ഥാനം അതിന്റെ വിലയെ നിർണ്ണയിക്കുന്നു. | |||
ഉദാഹരണത്തിന് 319 എന്ന് സംഖ്യ എടുക്കാം, | ഉദാഹരണത്തിന് 319 എന്ന് സംഖ്യ എടുക്കാം, ഇതിനർത്ഥം 3 നൂറുകളും 1 പത്തും 9 ഏകകങ്ങളും. അപ്പോൾ ആകെതുക 300+10+9. ഇവിടെ 3, 1, 9 എന്നിവയെ യഥാക്രമം നൂറുകളുടേയും പത്തുകളുടേയും ഏകകങ്ങളുടേയും ഗുണാങ്കാങ്ങൾ (coefficients) എന്നുവിളിക്കുന്നു. | ||
എണ്ണൽ സംഖ്യകളെ ഒരു നേർരേഖയിൽ ഒരേ അകലത്തിൽ ഇടവിട്ട് പ്രതിഷ്ഠിച്ച് സൂചിപ്പിക്കാവുന്നതാണ്. | |||
[[പ്രമാണം:natural numbers.svg]] | [[പ്രമാണം:natural numbers.svg]] | ||
ഏറ്റവും ആദ്യത്തെ | ഏറ്റവും ആദ്യത്തെ എണ്ണൽ സംഖ്യയായ പൂജ്യത്തിൽനിന്നു തുടങ്ങി വലത്തോട്ട് പോകും തോറും സംഖ്യയുടെ വില വർദ്ധിക്കുന്നു. ഈ രേഖയിൽ ഒരു സഖ്യ അതിന്റെ വലതുവശത്തുള്ള സംഖ്യയേക്കാൾ ചെറുതായിരിക്കും, അതുപോലെ ഒരു സംഖ്യ അതിന്റെ ഇടതുവശത്തുള്ള സംഖ്യയേക്കാൾ വലുതായിരിക്കും. രണ്ട് സംഖ്യകളെ എടുത്ത് ആദ്യത്തെ സഖ്യ രണ്ടാമത്തേതിനേക്കാൾ ചെറുതാണ് എന്നു സൂചിപ്പിക്കുവാൻ < എന്ന ചിഹ്നമാണ് ഉപയോഗിക്കുക, അതുപോലെ ആദ്യത്തെ സംഖ്യ രണ്ടാമത്തേതിനേക്കാൾ വലുതാണ് എന്നു സൂചിപ്പിക്കുവാൻ > എന്ന് ചിഹ്നം ഉപയോഗിക്കും. | ||
2<5 | 2<5 എന്നെഴുതിയാൽ 2 എന്ന സംഖ്യ 5 എന്നതിനേക്കാൾ ചെറുതാണ് എന്നാണ്. അതുപോലെ 9>4 എന്നെഴുതിയാൽ 9 എന്ന സംഖ്യ 4 എന്നതിനേക്കാൾ വലുതാണ് എന്നു സൂചിപ്പിക്കുന്നു. | ||
== | ==പൂർണ്ണസംഖ്യ== | ||
മുകളിലെ | മുകളിലെ എണ്ണൽ സംഖ്യ എന്ന ഭാഗത്ത് നൽകിയിരിക്കുന്ന സംഖ്യാ രേഖയെ പൂജ്യത്തിന്റേയും ഇടത്തോട്ടും നീട്ടി വരച്ചാൽ ഒരേ അകലത്തിൽ വീണ്ടും സംഖ്യകൾ ചേർക്കാവുന്നതാണ്. | ||
[[പ്രമാണം:intiger line.png|500px]] | [[പ്രമാണം:intiger line.png|500px]] | ||
പൂജ്യത്തിന്റെ ഇടത്തുള്ള സംഖ്യകളെ | പൂജ്യത്തിന്റെ ഇടത്തുള്ള സംഖ്യകളെ ഋണസംഖ്യകൾ എന്ന് പറയും (ഇംഗ്ലീഷിൽ negative numbers എന്നു പറയും). എണ്ണൽ സംഖ്യകൾ എഴുതുന്നതു പോലെ തന്നെയാണ് ഋണസംഖ്യകളും എഴുതുന്നത് മുൻപിൽ ഒരു ഋണ ചിഹ്നം അഥവാ നെഗറ്റീവ് ചിഹ്നം ചേർക്കുകയും ചെയ്യും. പൂജ്യത്തിന് വലതുവശത്തുള്ള സംഖ്യയെ ധനസംഖ്യ (positive number) എന്ന് പറയും. ഇങ്ങനെ പൂജ്യം, ഋണസംഖ്യകൾ (negative numbers), ധനസംഖ്യകൾ (positive numbers) എന്നിവയെ ചേർത്ത് മൊത്തത്തിൽ പൂർണ്ണസംഖ്യകൾ എന്നു വിളിക്കും. ഇവിടെയും -8 < 3 എന്നും -2>-8 എന്നുമൊക്കെ സൂചിപ്പിക്കാം കാരണം -8 ന്റെ വലതുവശത്താണ് 3, അതുപോലെ -2 ന്റെ ഇടത്തുവശത്താണ് -8. | ||
ബ്രായ്ക്കറ്റുകൾ: ക്രിയകൾക്കായി നെഗറ്റീവ് സംഖ്യകൾ എഴുതുമ്പോൾ അവ ബ്രാക്കറ്റുകൾക്കുള്ളിലാക്കേണ്ടതാണ്. ഉദാ: 7--4 എന്നത് 7-(-4) എന്നെഴുതുക. അതുവഴി കുറയ്ക്കൾ ചിഹ്നവും നെഗറ്റീവ് ചിഹ്നവും തമ്മിൽ കൂടികുഴയാതെ നോക്കാവുന്നതാണ്. | |||
== | ==പൂർണ്ണസംഖ്യകളിലെ അടിസ്ഥാന ക്രിയകൾ== | ||
ഇനി | ഇനി പൂർണ്ണസംഖ്യകലിൽ നടത്തുന്ന അടിസ്ഥാനമായ ഗണിതക്രിയകളെപ്പറ്റി. | ||
===കൂട്ടലും കുറക്കലും (സങ്കലനവും വ്യവകലനവും)=== | ===കൂട്ടലും കുറക്കലും (സങ്കലനവും വ്യവകലനവും)=== | ||
രണ്ട് | രണ്ട് സംഖ്യകൾ കൂട്ടുന്നതിനെ സങ്കലനം എന്നും പറയും, കൂട്ടുമ്പോൾ രേഖയിൽ ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് രണ്ടാമത്തെ സംഖ്യയ്ക്ക് തുല്യമായ അത്രക്കും ദൂരം വലത്തോട്ട് സഞ്ചരിക്കുന്നതിന് തുല്യമാണ്. കുറയ്ക്കലിനെ വ്യവകലനം എന്നും പറയുന്നു, കുറക്കുമ്പോൾ രേഖയിൽ ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് രണ്ടാമത്തെ സംഖ്യയ്ക്കു തുല്യമായ അകലം ഇടത്തോട്ട് പോകുന്നതിനു തുല്യമാണ്. | ||
[[പ്രമാണം:intiger addition and subtraction.png|500px]] | [[പ്രമാണം:intiger addition and subtraction.png|500px]] | ||
വരി 31: | വരി 31: | ||
===ഗുണനവും ഹരണവും=== | ===ഗുണനവും ഹരണവും=== | ||
ഗുണനത്തെ | ഗുണനത്തെ പെരുക്കൽ എന്നും പറയാം. ഒരു സംഖ്യ തുടർച്ചയായി കൂട്ടുന്നതാണ് ഗുണനത്തിന്റെ അടിസ്ഥാനം. 6 x 3 എന്നാൽ 6+6+6 =18. ഇനി ഒരു സഖ്യ മറ്റൊരു സംഖ്യയിൽ എത്ര തവണ അടങ്ങിയിരിക്കുന്നു എന്നതണ് ഹരണം കൊണ്ടുദ്ദേശിക്കുന്നത്. 6÷2 എന്നാൽ 6 ൽ എത്ര രണ്ടുകളുണ്ട് എന്നാണ്, ഇവിടെ ഉത്തരം 3 ആണ്, ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് പൂജ്യമോ രണ്ടാമത്തെ സംഖ്യയേക്കാൾ ചെറുതോ ആയ സംഖ്യ ലഭിക്കുന്നത് വരെയോ രണ്ടാമത്തെ സംഖ്യ കുറക്കുക എത്ര തവണ കുറക്കാൻ പറ്റുക അതായിരിക്കും ഹരണഫലം. | ||
===ഗണിതക്രിയകളിലെ | ===ഗണിതക്രിയകളിലെ മുൻഗണനകൾ=== | ||
ക്രിയകൾ ചെയ്യുമ്പോൾ ചില മുൻഗണനകളൊക്കെയുണ്ട്. ഹരണത്തിനും ഗുണനത്തിനും കൂട്ടൽ, കിഴിക്കൽ (കുറക്കൽ) എന്നിവയേക്കാൾ മുൻഗണന നൽകണം. അതുപോലെ ബ്രായ്ക്കറ്റിലുള്ളതിനു മുൻഗണന നൽകണം. | |||
:ഉദാഹരണം: | :ഉദാഹരണം: | ||
വരി 41: | വരി 41: | ||
= 10 | = 10 | ||
==അങ്കഗണിതത്തിലെ അടിസ്ഥാന | ==അങ്കഗണിതത്തിലെ അടിസ്ഥാന നിയമങ്ങൾ== | ||
# ക്രമനിയമം (Commutativity) | # ക്രമനിയമം (Commutativity) | ||
കൂട്ടലും ഗുണിക്കലും | കൂട്ടലും ഗുണിക്കലും നടത്തുമ്പോൾ സംഖ്യകളുടെ ക്രമത്തിൽ കാര്യമൊന്നുമില്ല എന്നാണ് ക്രമനിയമം. അതായത് 3 + 4 ഉം 4+ 3 തുല്യമാണ്, അതുപോലെ 2 × 5 ഉം 5 ×2 ഉം തുല്യമാണ്. | ||
[[ | [[വർഗ്ഗം:ഗണിതം]] | ||
<!--visbot verified-chils-> |
11:15, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം
എണ്ണൽ സംഖ്യ
എണ്ണൽ സംഖ്യയെ ഇംഗ്ലീഷിൽ (Natural number) എന്നു പറയും. മലയാളത്തിൽ നിസർഗ്ഗസംഖ്യ, പ്രാകൃതസംഖ്യ എന്നീ പേരുകളുമുണ്ട്. ഇംഗ്ലീഷിൽ Whole number എന്നും പറയുന്നു. 0, 1, 2,...,9 എന്നീ പത്ത് അക്കങ്ങൾകൊണ്ട് ഇവ എഴുതപ്പെടുന്നു. ഇങ്ങനെ എഴുതുമ്പോൾ ഓരോ അക്കത്തിന്റെ സ്ഥാനം അതിന്റെ വിലയെ നിർണ്ണയിക്കുന്നു.
ഉദാഹരണത്തിന് 319 എന്ന് സംഖ്യ എടുക്കാം, ഇതിനർത്ഥം 3 നൂറുകളും 1 പത്തും 9 ഏകകങ്ങളും. അപ്പോൾ ആകെതുക 300+10+9. ഇവിടെ 3, 1, 9 എന്നിവയെ യഥാക്രമം നൂറുകളുടേയും പത്തുകളുടേയും ഏകകങ്ങളുടേയും ഗുണാങ്കാങ്ങൾ (coefficients) എന്നുവിളിക്കുന്നു.
എണ്ണൽ സംഖ്യകളെ ഒരു നേർരേഖയിൽ ഒരേ അകലത്തിൽ ഇടവിട്ട് പ്രതിഷ്ഠിച്ച് സൂചിപ്പിക്കാവുന്നതാണ്. പ്രമാണം:Natural numbers.svg
ഏറ്റവും ആദ്യത്തെ എണ്ണൽ സംഖ്യയായ പൂജ്യത്തിൽനിന്നു തുടങ്ങി വലത്തോട്ട് പോകും തോറും സംഖ്യയുടെ വില വർദ്ധിക്കുന്നു. ഈ രേഖയിൽ ഒരു സഖ്യ അതിന്റെ വലതുവശത്തുള്ള സംഖ്യയേക്കാൾ ചെറുതായിരിക്കും, അതുപോലെ ഒരു സംഖ്യ അതിന്റെ ഇടതുവശത്തുള്ള സംഖ്യയേക്കാൾ വലുതായിരിക്കും. രണ്ട് സംഖ്യകളെ എടുത്ത് ആദ്യത്തെ സഖ്യ രണ്ടാമത്തേതിനേക്കാൾ ചെറുതാണ് എന്നു സൂചിപ്പിക്കുവാൻ < എന്ന ചിഹ്നമാണ് ഉപയോഗിക്കുക, അതുപോലെ ആദ്യത്തെ സംഖ്യ രണ്ടാമത്തേതിനേക്കാൾ വലുതാണ് എന്നു സൂചിപ്പിക്കുവാൻ > എന്ന് ചിഹ്നം ഉപയോഗിക്കും.
2<5 എന്നെഴുതിയാൽ 2 എന്ന സംഖ്യ 5 എന്നതിനേക്കാൾ ചെറുതാണ് എന്നാണ്. അതുപോലെ 9>4 എന്നെഴുതിയാൽ 9 എന്ന സംഖ്യ 4 എന്നതിനേക്കാൾ വലുതാണ് എന്നു സൂചിപ്പിക്കുന്നു.
പൂർണ്ണസംഖ്യ
മുകളിലെ എണ്ണൽ സംഖ്യ എന്ന ഭാഗത്ത് നൽകിയിരിക്കുന്ന സംഖ്യാ രേഖയെ പൂജ്യത്തിന്റേയും ഇടത്തോട്ടും നീട്ടി വരച്ചാൽ ഒരേ അകലത്തിൽ വീണ്ടും സംഖ്യകൾ ചേർക്കാവുന്നതാണ്.
പൂജ്യത്തിന്റെ ഇടത്തുള്ള സംഖ്യകളെ ഋണസംഖ്യകൾ എന്ന് പറയും (ഇംഗ്ലീഷിൽ negative numbers എന്നു പറയും). എണ്ണൽ സംഖ്യകൾ എഴുതുന്നതു പോലെ തന്നെയാണ് ഋണസംഖ്യകളും എഴുതുന്നത് മുൻപിൽ ഒരു ഋണ ചിഹ്നം അഥവാ നെഗറ്റീവ് ചിഹ്നം ചേർക്കുകയും ചെയ്യും. പൂജ്യത്തിന് വലതുവശത്തുള്ള സംഖ്യയെ ധനസംഖ്യ (positive number) എന്ന് പറയും. ഇങ്ങനെ പൂജ്യം, ഋണസംഖ്യകൾ (negative numbers), ധനസംഖ്യകൾ (positive numbers) എന്നിവയെ ചേർത്ത് മൊത്തത്തിൽ പൂർണ്ണസംഖ്യകൾ എന്നു വിളിക്കും. ഇവിടെയും -8 < 3 എന്നും -2>-8 എന്നുമൊക്കെ സൂചിപ്പിക്കാം കാരണം -8 ന്റെ വലതുവശത്താണ് 3, അതുപോലെ -2 ന്റെ ഇടത്തുവശത്താണ് -8.
ബ്രായ്ക്കറ്റുകൾ: ക്രിയകൾക്കായി നെഗറ്റീവ് സംഖ്യകൾ എഴുതുമ്പോൾ അവ ബ്രാക്കറ്റുകൾക്കുള്ളിലാക്കേണ്ടതാണ്. ഉദാ: 7--4 എന്നത് 7-(-4) എന്നെഴുതുക. അതുവഴി കുറയ്ക്കൾ ചിഹ്നവും നെഗറ്റീവ് ചിഹ്നവും തമ്മിൽ കൂടികുഴയാതെ നോക്കാവുന്നതാണ്.
പൂർണ്ണസംഖ്യകളിലെ അടിസ്ഥാന ക്രിയകൾ
ഇനി പൂർണ്ണസംഖ്യകലിൽ നടത്തുന്ന അടിസ്ഥാനമായ ഗണിതക്രിയകളെപ്പറ്റി.
കൂട്ടലും കുറക്കലും (സങ്കലനവും വ്യവകലനവും)
രണ്ട് സംഖ്യകൾ കൂട്ടുന്നതിനെ സങ്കലനം എന്നും പറയും, കൂട്ടുമ്പോൾ രേഖയിൽ ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് രണ്ടാമത്തെ സംഖ്യയ്ക്ക് തുല്യമായ അത്രക്കും ദൂരം വലത്തോട്ട് സഞ്ചരിക്കുന്നതിന് തുല്യമാണ്. കുറയ്ക്കലിനെ വ്യവകലനം എന്നും പറയുന്നു, കുറക്കുമ്പോൾ രേഖയിൽ ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് രണ്ടാമത്തെ സംഖ്യയ്ക്കു തുല്യമായ അകലം ഇടത്തോട്ട് പോകുന്നതിനു തുല്യമാണ്.
പ്രമാണം:Intiger addition and subtraction.png
ഒരു നെഗറ്റീവ് സംഖ്യ കൂട്ടുന്നത് അതിന്റെ പോസിറ്റീവ് സംഖ്യ കുറക്കുന്നത് പോലെയാണ്, 7+(-5)=7-5. അതേപോലെ ഒരു നെഗറ്റീവ് സംഖ്യ കുറയ്ക്കുന്നത് അതിന്റെ പോസിറ്റീവ് സംഖ്യ കൂട്ടുന്നത് പോലെ തന്നെയാണ്.
ഗുണനവും ഹരണവും
ഗുണനത്തെ പെരുക്കൽ എന്നും പറയാം. ഒരു സംഖ്യ തുടർച്ചയായി കൂട്ടുന്നതാണ് ഗുണനത്തിന്റെ അടിസ്ഥാനം. 6 x 3 എന്നാൽ 6+6+6 =18. ഇനി ഒരു സഖ്യ മറ്റൊരു സംഖ്യയിൽ എത്ര തവണ അടങ്ങിയിരിക്കുന്നു എന്നതണ് ഹരണം കൊണ്ടുദ്ദേശിക്കുന്നത്. 6÷2 എന്നാൽ 6 ൽ എത്ര രണ്ടുകളുണ്ട് എന്നാണ്, ഇവിടെ ഉത്തരം 3 ആണ്, ആദ്യത്തെ സംഖ്യയിൽ നിന്ന് പൂജ്യമോ രണ്ടാമത്തെ സംഖ്യയേക്കാൾ ചെറുതോ ആയ സംഖ്യ ലഭിക്കുന്നത് വരെയോ രണ്ടാമത്തെ സംഖ്യ കുറക്കുക എത്ര തവണ കുറക്കാൻ പറ്റുക അതായിരിക്കും ഹരണഫലം.
ഗണിതക്രിയകളിലെ മുൻഗണനകൾ
ക്രിയകൾ ചെയ്യുമ്പോൾ ചില മുൻഗണനകളൊക്കെയുണ്ട്. ഹരണത്തിനും ഗുണനത്തിനും കൂട്ടൽ, കിഴിക്കൽ (കുറക്കൽ) എന്നിവയേക്കാൾ മുൻഗണന നൽകണം. അതുപോലെ ബ്രായ്ക്കറ്റിലുള്ളതിനു മുൻഗണന നൽകണം.
- ഉദാഹരണം:
5 + 2 × ( 7 - 3) - 9 ÷ 3 = 5 + 2 × (4) - 9 ÷ 3 = 5 + 8 - 3 = 10
അങ്കഗണിതത്തിലെ അടിസ്ഥാന നിയമങ്ങൾ
- ക്രമനിയമം (Commutativity)
കൂട്ടലും ഗുണിക്കലും നടത്തുമ്പോൾ സംഖ്യകളുടെ ക്രമത്തിൽ കാര്യമൊന്നുമില്ല എന്നാണ് ക്രമനിയമം. അതായത് 3 + 4 ഉം 4+ 3 തുല്യമാണ്, അതുപോലെ 2 × 5 ഉം 5 ×2 ഉം തുല്യമാണ്.