[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലെ]] [[യൂക്ലിഡിയന് ജ്യാമിതി|യൂക്ലിഡിയന് ജ്യാമിതിയില്]] ഒരു [[സമഭുജ ത്രികോണം|സമഭുജ ത്രികോണത്തിന്റെ]] മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങള് വിശദീകരിക്കാന് ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ് '''പൈത്തഗോറസ് സിദ്ധാന്തം'''. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത [[ഗ്രീക്ക്]] [[ഗണിതശാസ്ത്രജ്ഞന്|ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന്]] [[പൈത്തഗോറസ്|പൈത്തഗോറസിന്റെ]] പേരിലാണ് ഇത് അറിയപ്പെടുന്നത്. <ref>Heath, Vol I, p. 144.</ref>
[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലെ]] [[യൂക്ലിഡിയന് ജ്യാമിതി|യൂക്ലിഡിയന് ജ്യാമിതിയില്]] ഒരു [[സമഭുജ ത്രികോണം|സമഭുജ ത്രികോണത്തിന്റെ]] മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങള് വിശദീകരിക്കാന് ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ് '''പൈത്തഗോറസ് സിദ്ധാന്തം'''. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത [[ഗ്രീക്ക്]] [[ഗണിതശാസ്ത്രജ്ഞന്|ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന്]] [[പൈത്തഗോറസ്|പൈത്തഗോറസിന്റെ]] പേരിലാണ് ഇത് അറിയപ്പെടുന്നത്. <ref>Heath, Vol I, p. 144.</ref>
[[ചിത്രം:Pythagorean.svg|thumb|'''The Pythagorean theorem''': The sum of the areas of the two squares on the legs (''a'' and ''b'') equals the area of the square on the hypotenuse (''c'').]]
[[ചിത്രം:Pythagorean.svg|thumb|'''The Pythagorean theorem''': The sum of the areas of the two squares on the legs (''a'' and ''b'') equals the area of the square on the hypotenuse (''c'').]]
പ്രമാണം:Pythagorean.svgThe Pythagorean theorem: The sum of the areas of the two squares on the legs (a and b) equals the area of the square on the hypotenuse (c).