"സമചതുരം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
No edit summary
വരി 21: വരി 21:
[[വിഭാഗം:ജ്യാമിതി]]
[[വിഭാഗം:ജ്യാമിതി]]
{{ജ്യാമിതി-അപൂര്‍ണ്ണം|Square (geometry)}}
{{ജ്യാമിതി-അപൂര്‍ണ്ണം|Square (geometry)}}
[[af:Vierkant]]
[[an:Cuadrato]]
[[ar:مربع]]
[[arz:مربع]]
[[ast:Cuadráu]]
[[ay:Pusi k'uchuni]]
[[az:Kvadrat]]
[[bat-smg:Kvadrots]]
[[be:Квадрат]]
[[be-x-old:Квадрат]]
[[bg:Квадрат]]
[[bn:বর্গক্ষেত্র]]
[[bs:Kvadrat]]
[[ca:Quadrat (polígon)]]
[[ckb:چوارگۆشە]]
[[cs:Čtverec]]
[[cy:Sgwâr]]
[[da:Kvadrat]]
[[de:Quadrat (Geometrie)]]
[[el:Τετράγωνο]]
[[en:Square (geometry)]]
[[eo:Kvadrato (geometrio)]]
[[es:Cuadrado]]
[[et:Ruut]]
[[eu:Lauki]]
[[fa:مربع]]
[[fi:Neliö (geometria)]]
[[fr:Carré]]
[[gl:Cadrado]]
[[he:ריבוע]]
[[hi:वर्गाकार]]
[[hr:Kvadrat]]
[[hsb:Kwadrat]]
[[ht:Kare]]
[[hu:Négyzet]]
[[id:Persegi]]
[[io:Quadrato]]
[[is:Ferningur]]
[[it:Quadrato (geometria)]]
[[ja:正方形]]
[[ka:კვადრატი]]
[[km:ការ៉េ]]
[[ko:정사각형]]
[[la:Quadrum]]
[[li:Veerkant]]
[[lo:ຮູບຈັດຕຸລັດ]]
[[lt:Kvadratas]]
[[lv:Kvadrāts]]
[[mk:Квадрат]]
[[mn:Квадрат]]
[[mr:चौरस]]
[[nl:Vierkant (meetkunde)]]
[[nn:Kvadrat]]
[[no:Kvadrat]]
[[pl:Kwadrat]]
[[pt:Quadrado]]
[[qu:T'asra]]
[[ro:Pătrat]]
[[ru:Квадрат]]
[[scn:Quatratu]]
[[sco:Squerr]]
[[sh:Kvadrat]]
[[simple:Square (geometry)]]
[[sk:Štvorec]]
[[sl:Kvadrat (geometrija)]]
[[sr:Квадрат]]
[[su:Pasagi bener]]
[[sv:Kvadrat]]
[[sw:Mraba]]
[[szl:Kwadrat]]
[[ta:சதுரம்]]
[[th:รูปสี่เหลี่ยมจัตุรัส]]
[[tl:Parisukat]]
[[tr:Kare]]
[[uk:Квадрат]]
[[ur:مربع (ہندسہ)]]
[[uz:Kvadrat]]
[[vi:Hình vuông]]
[[vls:Vierkant]]
[[war:Kwadrado]]
[[yi:קוואדראט]]
[[zh:正方形]]
[[zh-yue:正方形]]

16:44, 27 ഒക്ടോബർ 2009-നു നിലവിലുണ്ടായിരുന്ന രൂപം

യൂക്ലീഡിയന്‍ ജ്യാമിതിയില്‍ സമചതുരം എന്നാല്‍ നാലുവശങ്ങള്‍ തുല്യമായ ഒരു ക്രമബഹുഭുജമാണ്. ഓരോ കോണും 90 ഡിഗ്രി വീതമാണ്. A,B,C,D ഇവ നാലുവശങ്ങളായ സമചതുരത്തെ ABCD എന്ന് സൂചിപ്പിക്കാം.

വര്‍ഗ്ഗീകരണം

ചതുര്‍ഭുജത്തിന്റെ ഒരു പ്രത്യേകവിഭാഗമാണ് സമചതുരം. ഈ രൂപത്തിന് 4 മട്ടകോണുകളും സമാന്തരവും തുല്യവുമായ എതിര്‍വശങ്ങളും‍ ഉണ്ടായിരിക്കും.

സൂത്രവാക്യങ്ങള്‍

നീളം t വശങ്ങളുള്ള ഒരു സമചതുരത്തിന്റെ

  • ചുറ്റളവ് 4t.ആണ്.ഇതിനെ P = 4t. ഇപ്രകാരം സൂചിപ്പിക്കാം.
  • വിസ്തീര്‍ണ്ണം t2.അതായത് A = t2

ആദ്യകാലങ്ങളില്‍ രണ്ടാംകൃതി വിവരിച്ചിരുന്നത് സമചതുരത്തിന്റെ വിസ്തീര്‍ണ്ണത്തെ ആസ്പദമാക്കിയായിരുന്നു എന്നതിനാലാണ് സമചതുരത്തിന്റെ ആംഗലേയമായ സ്ക്വയര്‍ എന്ന പദം രണ്ടാംകൃതിയേയും സൂചിപ്പിക്കാനുപയോഗിക്കുന്നത്.

സ്വഭാവങ്ങള്‍

  • ഓരോ കോണും 90ഡിഗ്രി വീതമുള്ളവയാണ്‌‍, അതായത് മട്ടകോണുകളാണ്.

ഒരു സമചതുരത്തിലെ വികര്‍ണ്ണങ്ങളെല്ലാം തുല്യമാണ്. വിപരീതമായി പറഞ്ഞാല്‍ ഒരു സമചതുര്‍ഭുജത്തിന്റെ വികര്‍ണ്ണങ്ങള്‍ തുല്യമായാല്‍ അതൊരു സമചതുരമായിരിക്കും. സമചതുരത്തിന്റെ വികര്‍ണ്ണം വശത്തിന്റെ നീളത്തിന്റെ <math>\sqrt{2}</math>മടങ്ങായിരിക്കും. ഈ മൂല്യത്തേയാണ് പൈത്തഗോറസ് സ്ഥിരാങ്കം എന്ന് പറയുന്നത്. അഭിന്നകം എന്ന് ആദ്യം തെളിയിക്കപ്പെട്ട സംഖ്യയാണിത്. ചതുരവും സമചതുര്‍ഭുജവും ചേര്‍ന്ന രൂപമാണ് സമചതുരം.

ചില വസ്തുതകള്‍ കൂടി

  • നാലുവശങ്ങളും തുല്യമായ സമചതുരത്തിന്റെ കോണുകളുടെ തുക 360ഡിഗ്രി ആണ്.
  • ഒരു വൃത്തം സമചതുരത്തിനു ചുറ്റും വരച്ചാല്‍ (പരിവൃത്തം)വൃത്തത്തിന്റെ വിസ്തീര്‍ണ്ണം സമചതുരത്തിന്റെ വിസ്തീര്‍ണ്ണത്തിന്റെ π / 2 മടങ്ങാണ്.
  • ഒരു സമചതുരത്തില്‍ അന്തര്വൃത്തം വരച്ചാല്‍ വൃത്തത്തിന്റെ വിസ്തീര്‍ണ്ണം സമചതുരത്തിന്റെ വിസ്തീര്‍ണ്ണത്തിന്റെ π / 4 മടങ്ങ് ആണ്.
  • ഒരേ ചുറ്റളവുള്ള ഏതൊരു ചതുര്‍ഭുജത്തിനേക്കാളും വിസ്തീര്‍ണ്ണം സമചതുരത്തിന് കൂടുതലാണ്.

അവലംബം

http://mathworld.wolfram.com/Square.html ഫലകം:ജ്യാമിതി-അപൂര്‍ണ്ണം

"https://schoolwiki.in/index.php?title=സമചതുരം&oldid=1090" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്