"സമവാക്യം (ഗണിതശാസ്ത്രം)" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
No edit summary
No edit summary
 
വരി 1: വരി 1:
ഗണിതശാസ്ത്രത്തില്‍, രണ്ട് [[വ്യഞ്ജകം (ഗണിതം)|വ്യഞ്ജകങ്ങള്‍]] തുല്യങ്ങളാണെന്ന് കാണിക്കുന്ന പ്രതീകാത്മമകപ്രസ്താവനയാണ് '''സമവാക്യം''' അഥവാ '''സമീകരണം''' (Equation) എന്നറിയപ്പെടുന്നത്.  
ഗണിതശാസ്ത്രത്തിൽ, രണ്ട് [[വ്യഞ്ജകം (ഗണിതം)|വ്യഞ്ജകങ്ങൾ]] തുല്യങ്ങളാണെന്ന് കാണിക്കുന്ന പ്രതീകാത്മമകപ്രസ്താവനയാണ് '''സമവാക്യം''' അഥവാ '''സമീകരണം''' (Equation) എന്നറിയപ്പെടുന്നത്.  


സമീകരണം സംഖ്യകള്‍ മാത്രമുള്ളതോ, അക്ഷരങ്ങള്‍ അടങ്ങിയ സമതയോ ആവാം. ഒരു സമവാക്യത്തില്‍ തുല്യത കാണിക്കുന്നതിനായി,  = എന്ന സമചിഹ്നം ഉപയോഗിക്കുന്നു. ഉദാഹരണത്തിന് 2 + 3 = 5 എന്നത് സാംഖ്യികസമതയാണ് (Numerical Equation);  x(x − 1) = x<sup>2</sup> − x എന്നത് ഒരു സാക്ഷരസമതയും (Literal Equation) ആണ്. വാസ്തവികസംഖ്യാഗണത്തിലെ ഏതൊരംഗത്തിനും  ഈ പ്രസ്താവന ശരിയാണ്. അതുകൊണ്ട്, ഈ സമവാക്യം ഒരു [[സദാസത്യസമകം]] (Identity) കൂടിയാണ്. എന്നാല്‍, x<sup>2</sup> − x = 0 എന്ന സമത പരിഗണിച്ചാല്‍, 0,1 എന്നീ രണ്ട് വിലകള്‍ ഒഴിച്ച്, മറ്റൊരു സംഖ്യക്കും ഈ സമത സത്യമല്ല എന്നു കാണാം. അതിനാല്‍ ഇതൊരു സദാസത്യസമത അല്ല; ഒരു സമവാക്യം മാത്രമാണ്. ഒരു സമവക്യത്തില്‍ ഒന്നിലധികം ചരങ്ങള്‍ ഉണ്ടാവാം.  
സമീകരണം സംഖ്യകൾ മാത്രമുള്ളതോ, അക്ഷരങ്ങൾ അടങ്ങിയ സമതയോ ആവാം. ഒരു സമവാക്യത്തിൽ തുല്യത കാണിക്കുന്നതിനായി,  = എന്ന സമചിഹ്നം ഉപയോഗിക്കുന്നു. ഉദാഹരണത്തിന് 2 + 3 = 5 എന്നത് സാംഖ്യികസമതയാണ് (Numerical Equation);  x(x − 1) = x<sup>2</sup> − x എന്നത് ഒരു സാക്ഷരസമതയും (Literal Equation) ആണ്. വാസ്തവികസംഖ്യാഗണത്തിലെ ഏതൊരംഗത്തിനും  ഈ പ്രസ്താവന ശരിയാണ്. അതുകൊണ്ട്, ഈ സമവാക്യം ഒരു [[സദാസത്യസമകം]] (Identity) കൂടിയാണ്. എന്നാൽ, x<sup>2</sup> − x = 0 എന്ന സമത പരിഗണിച്ചാൽ, 0,1 എന്നീ രണ്ട് വിലകൾ ഒഴിച്ച്, മറ്റൊരു സംഖ്യക്കും ഈ സമത സത്യമല്ല എന്നു കാണാം. അതിനാൽ ഇതൊരു സദാസത്യസമത അല്ല; ഒരു സമവാക്യം മാത്രമാണ്. ഒരു സമവക്യത്തിൽ ഒന്നിലധികം ചരങ്ങൾ ഉണ്ടാവാം.  


== സവിശേഷതകള്‍ ==
== സവിശേഷതകൾ ==
[[ബീജഗണിതം|ബീജഗണിതത്തില്‍]] ഒരു സമവാക്യം സദാസത്യമാണെന്ന് പറയണമെങ്കില്‍
[[ബീജഗണിതം|ബീജഗണിതത്തിൽ]] ഒരു സമവാക്യം സദാസത്യമാണെന്ന് പറയണമെങ്കിൽ
#ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശവും [[സങ്കലനം|കൂട്ടിയാലോ]],  
#ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശവും [[സങ്കലനം|കൂട്ടിയാലോ]],  
#ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശത്തുനിന്നും [[വ്യവകലനം|കുറച്ചാലോ]],
#ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശത്തുനിന്നും [[വ്യവകലനം|കുറച്ചാലോ]],
#ഏത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും [[ഗുണനം|ഗുണിച്ചാലോ]],  
#ഏത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും [[ഗുണനം|ഗുണിച്ചാലോ]],  
#പൂജ്യമല്ലാത്ത എത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും [[ഹരണം|ഹരിച്ചാലോ]], അല്ലെങ്കില്‍,  
#പൂജ്യമല്ലാത്ത എത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും [[ഹരണം|ഹരിച്ചാലോ]], അല്ലെങ്കിൽ,  
#പൊതുവേ, ഏതു [[ഫലനം|ഫലനവും]] സമത്തിന് ഇരുവശത്തും സംയോജിപ്പിച്ചാലോ സമതയുടെ ഇരുവശത്തെ വ്യഞ്ജകങ്ങളുടെ വില തുല്യമായിരിക്കണം. എന്നാല്‍, ഇപ്രകാരം ക്രിയകള്‍ ചെയ്യുമ്പോള്‍ വേറൊരു സമവാക്യം സൃഷ്ടിക്കപ്പെടും.  
#പൊതുവേ, ഏതു [[ഫലനം|ഫലനവും]] സമത്തിന് ഇരുവശത്തും സംയോജിപ്പിച്ചാലോ സമതയുടെ ഇരുവശത്തെ വ്യഞ്ജകങ്ങളുടെ വില തുല്യമായിരിക്കണം. എന്നാൽ, ഇപ്രകാരം ക്രിയകൾ ചെയ്യുമ്പോൾ വേറൊരു സമവാക്യം സൃഷ്ടിക്കപ്പെടും.  


മേല്‍ക്കാണിച്ചിരിക്കുന്ന, 1 മുതല്‍ 4 വരെയുള്ള സവിശേഷതകളുള്ള ഒരു സമത, അതിന്റെ മണ്ഡലത്തിലെ ഒരു [[സര്‍വ്വസമത|സര്‍വ്വസമബന്ധമാണ്]].
മേൽക്കാണിച്ചിരിക്കുന്ന, 1 മുതൽ 4 വരെയുള്ള സവിശേഷതകളുള്ള ഒരു സമത, അതിന്റെ മണ്ഡലത്തിലെ ഒരു [[സർവ്വസമത|സർവ്വസമബന്ധമാണ്]].
അപ്രകാരം എല്ലാ സവിശേഷതകളും ഉള്ള ഒരു മണ്ഡലം, വാസ്തവികസംഖ്യാഗണമാണ്. എന്നാല്‍, എണ്ണല്‍സംഖ്യാഗണമോ പൂര്‍ണ്ണസംഖ്യാഗണമോ എല്ലാ സമവാക്യസവിശേഷതകളും പാലിക്കുന്നില്ല.
അപ്രകാരം എല്ലാ സവിശേഷതകളും ഉള്ള ഒരു മണ്ഡലം, വാസ്തവികസംഖ്യാഗണമാണ്. എന്നാൽ, എണ്ണൽസംഖ്യാഗണമോ പൂർണ്ണസംഖ്യാഗണമോ എല്ലാ സമവാക്യസവിശേഷതകളും പാലിക്കുന്നില്ല.


== നിര്‍ദ്ധാരണം ==
== നിർദ്ധാരണം ==
ഒരു സമതയിലെ ചരങ്ങളുടെ വില കണ്ടെത്തുന്ന ഗണിതക്രീയയാണ് '''സമവാക്യനിര്‍ദ്ധാരണം'''  എന്നറിയപ്പെടുന്നത്. ആ വിലകളെ, സമതയുടെ '''മൂല്യങ്ങള്‍''' (Roots) എന്നു വിളിക്കുന്നു. ഒരേ മൂല്യങ്ങള്‍ ഉള്ള സമതകള്‍ തുല്യസമതകളാണ് (Equivalent Equations). x<sup>2</sup> = 3x - 2 എന്ന സമതയുടേയും x<sup>2</sup> + 2 = 3x എന്ന സമതയുടെയും രണ്ടു മൂല്യങ്ങളും (അതായത്,  1,2 എന്നീ സംഖ്യകള്‍) തുല്യങ്ങളാണ്. അതുകൊണ്ട് അവ തുല്യസമതകളാണ്.   
ഒരു സമതയിലെ ചരങ്ങളുടെ വില കണ്ടെത്തുന്ന ഗണിതക്രീയയാണ് '''സമവാക്യനിർദ്ധാരണം'''  എന്നറിയപ്പെടുന്നത്. ആ വിലകളെ, സമതയുടെ '''മൂല്യങ്ങൾ''' (Roots) എന്നു വിളിക്കുന്നു. ഒരേ മൂല്യങ്ങൾ ഉള്ള സമതകൾ തുല്യസമതകളാണ് (Equivalent Equations). x<sup>2</sup> = 3x - 2 എന്ന സമതയുടേയും x<sup>2</sup> + 2 = 3x എന്ന സമതയുടെയും രണ്ടു മൂല്യങ്ങളും (അതായത്,  1,2 എന്നീ സംഖ്യകൾ) തുല്യങ്ങളാണ്. അതുകൊണ്ട് അവ തുല്യസമതകളാണ്.   


ഒരു സമതയെ അതിന്റെ തുല്യസമതകള്‍ കൊണ്ട് തുടര്‍ച്ചയായി മാറ്റി ലഘൂകരിച്ചു കൊണ്ട് നിര്‍ദ്ധാരണം ചെയ്യുന്നത്. സമതകള്‍ നിര്‍ദ്ധാരണം ചെയ്യുന്നതിന് സാധാരണ താഴെക്കാണുന്ന ഉപായങ്ങള്‍ പ്രയോഗിക്കുന്നു:
ഒരു സമതയെ അതിന്റെ തുല്യസമതകൾ കൊണ്ട് തുടർച്ചയായി മാറ്റി ലഘൂകരിച്ചു കൊണ്ട് നിർദ്ധാരണം ചെയ്യുന്നത്. സമതകൾ നിർദ്ധാരണം ചെയ്യുന്നതിന് സാധാരണ താഴെക്കാണുന്ന ഉപായങ്ങൾ പ്രയോഗിക്കുന്നു:
# തുല്യസമതകള്‍കൊണ്ടുള്ള പുന:സ്ഥാപനം. (x+1)<sup>2</sup> = 2x + 5 എന്ന സമതയെ x<sup>2</sup>+ 2x +1 = 2x + 5  എന്ന് മാറ്റാം.
# തുല്യസമതകൾകൊണ്ടുള്ള പുന:സ്ഥാപനം. (x+1)<sup>2</sup> = 2x + 5 എന്ന സമതയെ x<sup>2</sup>+ 2x +1 = 2x + 5  എന്ന് മാറ്റാം.
# സമതയിലെ  പദങ്ങള്‍ ഇരുവശത്തേക്കും ക്രമീകരിച്ചുകൊണ്ട്. x<sup>2</sup>+ 2x +1 = 2x + 5 എന്നത്, x<sup>2</sup>+ 2x +1 - 2x - 5 = 0 എന്നെഴുതാം. ഇതില്‍ നിന്ന് x<sup>2</sup> - 4 = 0 എന്ന സമത ലഭിക്കുന്നു. ഇത് ആദ്യസമതയുടെ തുല്യസമതയാണ്.
# സമതയിലെ  പദങ്ങൾ ഇരുവശത്തേക്കും ക്രമീകരിച്ചുകൊണ്ട്. x<sup>2</sup>+ 2x +1 = 2x + 5 എന്നത്, x<sup>2</sup>+ 2x +1 - 2x - 5 = 0 എന്നെഴുതാം. ഇതിൽ നിന്ന് x<sup>2</sup> - 4 = 0 എന്ന സമത ലഭിക്കുന്നു. ഇത് ആദ്യസമതയുടെ തുല്യസമതയാണ്.
# സമതയുടെ ഇരുവശത്തും ഒരേ സംഖ്യകൊണ്ടോ, ഒരേ വ്യഞ്ജകം കൊണ്ട് ഹരിക്കുകയോ ഗുണിക്കുകയോ ചെയ്തുകൊണ്ടോ; ''എന്നാല്‍ ഇപ്രകാരം ചെയ്യുമ്പോള്‍, വ്യഞ്ജകങ്ങള്‍, പൂജ്യമായിത്തീരാന്‍ സാധിക്കുന്നവയായിരിക്കരുത്; അത് പുതിയ തുല്യസമതയെ സൃഷ്ടിക്കുകയില്ല. ഉദാഹരണത്തിന്, (x+2) (x-1) = 4 (x-1) എന്ന സമതയെ, (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു വിഭജിക്കുമ്പോള്‍, x+2 = 4 എന്ന സമത ലഭിക്കുന്നു. ഇതിന് x=2 എന്ന ഒരു മൂല്യം മാത്രമാണുള്ളത്, എന്നാല്‍ ആദ്യസമതയ്ക്ക്, X=1 എന്ന മറ്റൊരു മൂല്യം കൂടിയുണ്ട്. അതുപോലെ, x+2 = 4 എന്ന സമത നിര്‍ദ്ധാരണം ചെയ്യുമ്പോള്‍, സമതയുടെ ഇരുവശത്തും (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു ഗുണിച്ചാല്‍ കിട്ടുന്ന പുതിയ സമതയ്ക്ക്, x=2 എന്ന ഒരു മൂല്യമാത്രമുള്ള ആദ്യസമതയേക്കാള്‍, x=1 എന്ന ഒരു മൂല്യം കൂടുതലായുണ്ട്. അതുകൊണ്ട്, സമതകള്‍ നിര്‍ദ്ധാരണം ചെയ്യുമ്പോള്‍, ഇങ്ങനെ ആദ്യസമതയുടേ മൂല്യങ്ങള്‍ നഷ്ടപ്പെടാതിരിക്കുവാനും, പുതിയ മൂല്യങ്ങള്‍ അധികമായി വന്നു ചേരാതിരിക്കുവാനും സവിശേഷം ശ്രദ്ധിക്കണം.''
# സമതയുടെ ഇരുവശത്തും ഒരേ സംഖ്യകൊണ്ടോ, ഒരേ വ്യഞ്ജകം കൊണ്ട് ഹരിക്കുകയോ ഗുണിക്കുകയോ ചെയ്തുകൊണ്ടോ; ''എന്നാൽ ഇപ്രകാരം ചെയ്യുമ്പോൾ, വ്യഞ്ജകങ്ങൾ, പൂജ്യമായിത്തീരാൻ സാധിക്കുന്നവയായിരിക്കരുത്; അത് പുതിയ തുല്യസമതയെ സൃഷ്ടിക്കുകയില്ല. ഉദാഹരണത്തിന്, (x+2) (x-1) = 4 (x-1) എന്ന സമതയെ, (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു വിഭജിക്കുമ്പോൾ, x+2 = 4 എന്ന സമത ലഭിക്കുന്നു. ഇതിന് x=2 എന്ന ഒരു മൂല്യം മാത്രമാണുള്ളത്, എന്നാൽ ആദ്യസമതയ്ക്ക്, X=1 എന്ന മറ്റൊരു മൂല്യം കൂടിയുണ്ട്. അതുപോലെ, x+2 = 4 എന്ന സമത നിർദ്ധാരണം ചെയ്യുമ്പോൾ, സമതയുടെ ഇരുവശത്തും (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു ഗുണിച്ചാൽ കിട്ടുന്ന പുതിയ സമതയ്ക്ക്, x=2 എന്ന ഒരു മൂല്യമാത്രമുള്ള ആദ്യസമതയേക്കാൾ, x=1 എന്ന ഒരു മൂല്യം കൂടുതലായുണ്ട്. അതുകൊണ്ട്, സമതകൾ നിർദ്ധാരണം ചെയ്യുമ്പോൾ, ഇങ്ങനെ ആദ്യസമതയുടേ മൂല്യങ്ങൾ നഷ്ടപ്പെടാതിരിക്കുവാനും, പുതിയ മൂല്യങ്ങൾ അധികമായി വന്നു ചേരാതിരിക്കുവാനും സവിശേഷം ശ്രദ്ധിക്കണം.''
# അതുപോലെ ഒരു സമതയുടെ ഇരുവശവും ഒരു കൃത്യങ്കം കൊണ്ട്  ഉയര്‍ത്തുവാനും, ഒരേപോലെ മൂലനിര്‍ണയം ചെയ്യുവാനും കഴിയും. ''എന്നാല്‍, അപ്രകാരം കിട്ടുന്ന സമതകള്‍ തുല്യങ്ങളായിക്കൊള്ളണമെന്നില്ല; ഉദാഹരണത്തിന്, 2x=6 എന്ന സമതയ്ക്, x=3 ഒരു മൂല്യം മാത്രമാണുള്ളത്; എന്നാല്‍, (2x)<sup>2</sup>=36 എന്ന സമതയ്ക്ക്, x= 3, -3 എന്നിങ്ങനെ രണ്ട് മൂല്യങ്ങളുണ്ട്. അതുകൊണ്ട്, ഈ സവിശേഷത പ്രധാനമായും ശ്രദ്ധിച്ചിരിക്കണം.''
# അതുപോലെ ഒരു സമതയുടെ ഇരുവശവും ഒരു കൃത്യങ്കം കൊണ്ട്  ഉയർത്തുവാനും, ഒരേപോലെ മൂലനിർണയം ചെയ്യുവാനും കഴിയും. ''എന്നാൽ, അപ്രകാരം കിട്ടുന്ന സമതകൾ തുല്യങ്ങളായിക്കൊള്ളണമെന്നില്ല; ഉദാഹരണത്തിന്, 2x=6 എന്ന സമതയ്ക്, x=3 ഒരു മൂല്യം മാത്രമാണുള്ളത്; എന്നാൽ, (2x)<sup>2</sup>=36 എന്ന സമതയ്ക്ക്, x= 3, -3 എന്നിങ്ങനെ രണ്ട് മൂല്യങ്ങളുണ്ട്. അതുകൊണ്ട്, ഈ സവിശേഷത പ്രധാനമായും ശ്രദ്ധിച്ചിരിക്കണം.''




== വര്‍ഗ്ഗീകരണം ==
== വർഗ്ഗീകരണം ==
ഇരുവശത്തും [[ഏകപദം|ഏകപദങ്ങളോ]](Mononomial), [[ബഹുപദം|ബഹുപദങ്ങളോ]] (Polynomial) മാത്രമുള്ള ഒരു സമതയാണ് [[ബീജീയസമതകള്‍]] (Algebraic Equations). bx+ay<sup>2</sup> = xy +  2<sup>m</sup> എന്ന സമത, രണ്ടു ചരങ്ങളിലുള്ള ഒരു ബീജീയസമതയാണ്; എന്നാല്‍, bx+ay<sup>2</sup> = xy +  2<sup>x</sup> ഒരു ബിജീയസമതയല്ല; കാരണം, 2<sup>x</sup> എന്നത് ഒരു ഏകപദമല്ല.
ഇരുവശത്തും [[ഏകപദം|ഏകപദങ്ങളോ]](Mononomial), [[ബഹുപദം|ബഹുപദങ്ങളോ]] (Polynomial) മാത്രമുള്ള ഒരു സമതയാണ് [[ബീജീയസമതകൾ]] (Algebraic Equations). bx+ay<sup>2</sup> = xy +  2<sup>m</sup> എന്ന സമത, രണ്ടു ചരങ്ങളിലുള്ള ഒരു ബീജീയസമതയാണ്; എന്നാൽ, bx+ay<sup>2</sup> = xy +  2<sup>x</sup> ഒരു ബിജീയസമതയല്ല; കാരണം, 2<sup>x</sup> എന്നത് ഒരു ഏകപദമല്ല.


ക്രമപ്പെടുത്തിയ ഒരു  ബീജീയസമതയിലെ പദങ്ങളിലെ അജ്ഞാതചരങ്ങളുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും ഉയര്‍ന്ന തുക, ആ ബിജീയസമതയുടെ '''കൃതി''' (Degree) എന്നറിയപ്പെടുന്നു. ഉദാഹരണങ്ങള്‍: 4x<sup>3</sup> +  2x<sup>2</sup> - 17x = 4x<sup>3</sup> - 8 എന്ന സമത ക്രമപ്പെടുത്തുമ്പോള്‍, 2x<sup>2</sup> - 17x + 8 = 0 എന്നു കിട്ടുന്നു. അതുകൊണ്ട്, മേല്‍സമതയുടെ കൃതി രണ്ടാണ് ; a<sup>4</sup>x+b<sup>5</sup>=c<sup>5</sup> എന്ന സമതയുടെ കൃതി 1 ആണ് ; a<sup>2</sup>x<sup>5</sup>+bx<sup>3</sup>y<sup>3</sup>-a<sup>8</sup>xy<sup>4</sup>-2=0 എന്ന ദ്വിചരസമതയിലെ അജ്ഞാതചരങ്ങളായ എന്നിവയുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും കൂടിയ തുക 6 ആണ് ( ആദ്യപദത്തിലും, മൂന്നാം പദത്തിലും). അതുകൊണ്ട്, സമതയുടെ കൃതി 6 ആണ്.  
ക്രമപ്പെടുത്തിയ ഒരു  ബീജീയസമതയിലെ പദങ്ങളിലെ അജ്ഞാതചരങ്ങളുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും ഉയർന്ന തുക, ആ ബിജീയസമതയുടെ '''കൃതി''' (Degree) എന്നറിയപ്പെടുന്നു. ഉദാഹരണങ്ങൾ: 4x<sup>3</sup> +  2x<sup>2</sup> - 17x = 4x<sup>3</sup> - 8 എന്ന സമത ക്രമപ്പെടുത്തുമ്പോൾ, 2x<sup>2</sup> - 17x + 8 = 0 എന്നു കിട്ടുന്നു. അതുകൊണ്ട്, മേൽസമതയുടെ കൃതി രണ്ടാണ് ; a<sup>4</sup>x+b<sup>5</sup>=c<sup>5</sup> എന്ന സമതയുടെ കൃതി 1 ആണ് ; a<sup>2</sup>x<sup>5</sup>+bx<sup>3</sup>y<sup>3</sup>-a<sup>8</sup>xy<sup>4</sup>-2=0 എന്ന ദ്വിചരസമതയിലെ അജ്ഞാതചരങ്ങളായ എന്നിവയുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും കൂടിയ തുക 6 ആണ് ( ആദ്യപദത്തിലും, മൂന്നാം പദത്തിലും). അതുകൊണ്ട്, സമതയുടെ കൃതി 6 ആണ്.  


നിര്‍ദ്ധാരണം ചെയ്യുമ്പോള്‍, ഒരു ബിജീയസമവാക്യമായി ലഘൂകരിക്കപ്പെടുന്ന സമതകളും ബീജീയസമതകളായി പരിഗണിക്കാറുണ്ട്.
നിർദ്ധാരണം ചെയ്യുമ്പോൾ, ഒരു ബിജീയസമവാക്യമായി ലഘൂകരിക്കപ്പെടുന്ന സമതകളും ബീജീയസമതകളായി പരിഗണിക്കാറുണ്ട്.
(x+1)/(x-1) = 2x എന്ന സമത രണ്ടാം കൃതിയുള്ള സമതയാണ്. ലഘൂകരിക്കുമ്പോള്‍, 2x<sup>2</sup> -3x-1 = 0  എന്നതുല്യസമത ലഭിക്കുന്നു.  
(x+1)/(x-1) = 2x എന്ന സമത രണ്ടാം കൃതിയുള്ള സമതയാണ്. ലഘൂകരിക്കുമ്പോൾ, 2x<sup>2</sup> -3x-1 = 0  എന്നതുല്യസമത ലഭിക്കുന്നു.  


എത്രതന്നെ അജ്ഞാതചരങ്ങള്‍ ഉണ്ടായാലും, കൃതി ഒന്നായ സമതകളെ‍, '''രേഖീയസമതകള്‍''' (Linear Equations)എന്നു വിളിക്കുന്നു.
എത്രതന്നെ അജ്ഞാതചരങ്ങൾ ഉണ്ടായാലും, കൃതി ഒന്നായ സമതകളെ‍, '''രേഖീയസമതകൾ''' (Linear Equations)എന്നു വിളിക്കുന്നു.
   
   
[[വിഭാഗം:ഗണിതം]]
[[വർഗ്ഗം:ഗണിതം]]
{{ബീജഗണിതം-അപൂര്‍ണ്ണം|Equation}}
{{ബീജഗണിതം-അപൂർണ്ണം|Equation}}
 
<!--visbot  verified-chils->

10:21, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം

ഗണിതശാസ്ത്രത്തിൽ, രണ്ട് വ്യഞ്ജകങ്ങൾ തുല്യങ്ങളാണെന്ന് കാണിക്കുന്ന പ്രതീകാത്മമകപ്രസ്താവനയാണ് സമവാക്യം അഥവാ സമീകരണം (Equation) എന്നറിയപ്പെടുന്നത്.

സമീകരണം സംഖ്യകൾ മാത്രമുള്ളതോ, അക്ഷരങ്ങൾ അടങ്ങിയ സമതയോ ആവാം. ഒരു സമവാക്യത്തിൽ തുല്യത കാണിക്കുന്നതിനായി, = എന്ന സമചിഹ്നം ഉപയോഗിക്കുന്നു. ഉദാഹരണത്തിന് 2 + 3 = 5 എന്നത് സാംഖ്യികസമതയാണ് (Numerical Equation); x(x − 1) = x2 − x എന്നത് ഒരു സാക്ഷരസമതയും (Literal Equation) ആണ്. വാസ്തവികസംഖ്യാഗണത്തിലെ ഏതൊരംഗത്തിനും ഈ പ്രസ്താവന ശരിയാണ്. അതുകൊണ്ട്, ഈ സമവാക്യം ഒരു സദാസത്യസമകം (Identity) കൂടിയാണ്. എന്നാൽ, x2 − x = 0 എന്ന സമത പരിഗണിച്ചാൽ, 0,1 എന്നീ രണ്ട് വിലകൾ ഒഴിച്ച്, മറ്റൊരു സംഖ്യക്കും ഈ സമത സത്യമല്ല എന്നു കാണാം. അതിനാൽ ഇതൊരു സദാസത്യസമത അല്ല; ഒരു സമവാക്യം മാത്രമാണ്. ഒരു സമവക്യത്തിൽ ഒന്നിലധികം ചരങ്ങൾ ഉണ്ടാവാം.

സവിശേഷതകൾ

ബീജഗണിതത്തിൽ ഒരു സമവാക്യം സദാസത്യമാണെന്ന് പറയണമെങ്കിൽ

  1. ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശവും കൂട്ടിയാലോ,
  2. ഏത് അളവും സമചിഹ്നത്തിന് ഇരുവശത്തുനിന്നും കുറച്ചാലോ,
  3. ഏത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും ഗുണിച്ചാലോ,
  4. പൂജ്യമല്ലാത്ത എത് അളവുകൊണ്ടും സമത്തിന് ഇരുവശത്തേയും ഹരിച്ചാലോ, അല്ലെങ്കിൽ,
  5. പൊതുവേ, ഏതു ഫലനവും സമത്തിന് ഇരുവശത്തും സംയോജിപ്പിച്ചാലോ സമതയുടെ ഇരുവശത്തെ വ്യഞ്ജകങ്ങളുടെ വില തുല്യമായിരിക്കണം. എന്നാൽ, ഇപ്രകാരം ക്രിയകൾ ചെയ്യുമ്പോൾ വേറൊരു സമവാക്യം സൃഷ്ടിക്കപ്പെടും.

മേൽക്കാണിച്ചിരിക്കുന്ന, 1 മുതൽ 4 വരെയുള്ള സവിശേഷതകളുള്ള ഒരു സമത, അതിന്റെ മണ്ഡലത്തിലെ ഒരു സർവ്വസമബന്ധമാണ്. അപ്രകാരം എല്ലാ സവിശേഷതകളും ഉള്ള ഒരു മണ്ഡലം, വാസ്തവികസംഖ്യാഗണമാണ്. എന്നാൽ, എണ്ണൽസംഖ്യാഗണമോ പൂർണ്ണസംഖ്യാഗണമോ എല്ലാ സമവാക്യസവിശേഷതകളും പാലിക്കുന്നില്ല.

നിർദ്ധാരണം

ഒരു സമതയിലെ ചരങ്ങളുടെ വില കണ്ടെത്തുന്ന ഗണിതക്രീയയാണ് സമവാക്യനിർദ്ധാരണം എന്നറിയപ്പെടുന്നത്. ആ വിലകളെ, സമതയുടെ മൂല്യങ്ങൾ (Roots) എന്നു വിളിക്കുന്നു. ഒരേ മൂല്യങ്ങൾ ഉള്ള സമതകൾ തുല്യസമതകളാണ് (Equivalent Equations). x2 = 3x - 2 എന്ന സമതയുടേയും x2 + 2 = 3x എന്ന സമതയുടെയും രണ്ടു മൂല്യങ്ങളും (അതായത്, 1,2 എന്നീ സംഖ്യകൾ) തുല്യങ്ങളാണ്. അതുകൊണ്ട് അവ തുല്യസമതകളാണ്.

ഒരു സമതയെ അതിന്റെ തുല്യസമതകൾ കൊണ്ട് തുടർച്ചയായി മാറ്റി ലഘൂകരിച്ചു കൊണ്ട് നിർദ്ധാരണം ചെയ്യുന്നത്. സമതകൾ നിർദ്ധാരണം ചെയ്യുന്നതിന് സാധാരണ താഴെക്കാണുന്ന ഉപായങ്ങൾ പ്രയോഗിക്കുന്നു:

  1. തുല്യസമതകൾകൊണ്ടുള്ള പുന:സ്ഥാപനം. (x+1)2 = 2x + 5 എന്ന സമതയെ x2+ 2x +1 = 2x + 5 എന്ന് മാറ്റാം.
  2. സമതയിലെ പദങ്ങൾ ഇരുവശത്തേക്കും ക്രമീകരിച്ചുകൊണ്ട്. x2+ 2x +1 = 2x + 5 എന്നത്, x2+ 2x +1 - 2x - 5 = 0 എന്നെഴുതാം. ഇതിൽ നിന്ന് x2 - 4 = 0 എന്ന സമത ലഭിക്കുന്നു. ഇത് ആദ്യസമതയുടെ തുല്യസമതയാണ്.
  3. സമതയുടെ ഇരുവശത്തും ഒരേ സംഖ്യകൊണ്ടോ, ഒരേ വ്യഞ്ജകം കൊണ്ട് ഹരിക്കുകയോ ഗുണിക്കുകയോ ചെയ്തുകൊണ്ടോ; എന്നാൽ ഇപ്രകാരം ചെയ്യുമ്പോൾ, വ്യഞ്ജകങ്ങൾ, പൂജ്യമായിത്തീരാൻ സാധിക്കുന്നവയായിരിക്കരുത്; അത് പുതിയ തുല്യസമതയെ സൃഷ്ടിക്കുകയില്ല. ഉദാഹരണത്തിന്, (x+2) (x-1) = 4 (x-1) എന്ന സമതയെ, (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു വിഭജിക്കുമ്പോൾ, x+2 = 4 എന്ന സമത ലഭിക്കുന്നു. ഇതിന് x=2 എന്ന ഒരു മൂല്യം മാത്രമാണുള്ളത്, എന്നാൽ ആദ്യസമതയ്ക്ക്, X=1 എന്ന മറ്റൊരു മൂല്യം കൂടിയുണ്ട്. അതുപോലെ, x+2 = 4 എന്ന സമത നിർദ്ധാരണം ചെയ്യുമ്പോൾ, സമതയുടെ ഇരുവശത്തും (x-1) എന്ന വ്യഞ്ജകം കൊണ്ടു ഗുണിച്ചാൽ കിട്ടുന്ന പുതിയ സമതയ്ക്ക്, x=2 എന്ന ഒരു മൂല്യമാത്രമുള്ള ആദ്യസമതയേക്കാൾ, x=1 എന്ന ഒരു മൂല്യം കൂടുതലായുണ്ട്. അതുകൊണ്ട്, സമതകൾ നിർദ്ധാരണം ചെയ്യുമ്പോൾ, ഇങ്ങനെ ആദ്യസമതയുടേ മൂല്യങ്ങൾ നഷ്ടപ്പെടാതിരിക്കുവാനും, പുതിയ മൂല്യങ്ങൾ അധികമായി വന്നു ചേരാതിരിക്കുവാനും സവിശേഷം ശ്രദ്ധിക്കണം.
  4. അതുപോലെ ഒരു സമതയുടെ ഇരുവശവും ഒരു കൃത്യങ്കം കൊണ്ട് ഉയർത്തുവാനും, ഒരേപോലെ മൂലനിർണയം ചെയ്യുവാനും കഴിയും. എന്നാൽ, അപ്രകാരം കിട്ടുന്ന സമതകൾ തുല്യങ്ങളായിക്കൊള്ളണമെന്നില്ല; ഉദാഹരണത്തിന്, 2x=6 എന്ന സമതയ്ക്, x=3 ഒരു മൂല്യം മാത്രമാണുള്ളത്; എന്നാൽ, (2x)2=36 എന്ന സമതയ്ക്ക്, x= 3, -3 എന്നിങ്ങനെ രണ്ട് മൂല്യങ്ങളുണ്ട്. അതുകൊണ്ട്, ഈ സവിശേഷത പ്രധാനമായും ശ്രദ്ധിച്ചിരിക്കണം.


വർഗ്ഗീകരണം

ഇരുവശത്തും ഏകപദങ്ങളോ(Mononomial), ബഹുപദങ്ങളോ (Polynomial) മാത്രമുള്ള ഒരു സമതയാണ് ബീജീയസമതകൾ (Algebraic Equations). bx+ay2 = xy + 2m എന്ന സമത, രണ്ടു ചരങ്ങളിലുള്ള ഒരു ബീജീയസമതയാണ്; എന്നാൽ, bx+ay2 = xy + 2x ഒരു ബിജീയസമതയല്ല; കാരണം, 2x എന്നത് ഒരു ഏകപദമല്ല.

ക്രമപ്പെടുത്തിയ ഒരു ബീജീയസമതയിലെ പദങ്ങളിലെ അജ്ഞാതചരങ്ങളുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും ഉയർന്ന തുക, ആ ബിജീയസമതയുടെ കൃതി (Degree) എന്നറിയപ്പെടുന്നു. ഉദാഹരണങ്ങൾ: 4x3 + 2x2 - 17x = 4x3 - 8 എന്ന സമത ക്രമപ്പെടുത്തുമ്പോൾ, 2x2 - 17x + 8 = 0 എന്നു കിട്ടുന്നു. അതുകൊണ്ട്, മേൽസമതയുടെ കൃതി രണ്ടാണ് ; a4x+b5=c5 എന്ന സമതയുടെ കൃതി 1 ആണ് ; a2x5+bx3y3-a8xy4-2=0 എന്ന ദ്വിചരസമതയിലെ അജ്ഞാതചരങ്ങളായ എന്നിവയുടെ കൃത്യങ്കങ്ങളുടെ ഏറ്റവും കൂടിയ തുക 6 ആണ് ( ആദ്യപദത്തിലും, മൂന്നാം പദത്തിലും). അതുകൊണ്ട്, സമതയുടെ കൃതി 6 ആണ്.

നിർദ്ധാരണം ചെയ്യുമ്പോൾ, ഒരു ബിജീയസമവാക്യമായി ലഘൂകരിക്കപ്പെടുന്ന സമതകളും ബീജീയസമതകളായി പരിഗണിക്കാറുണ്ട്. (x+1)/(x-1) = 2x എന്ന സമത രണ്ടാം കൃതിയുള്ള സമതയാണ്. ലഘൂകരിക്കുമ്പോൾ, 2x2 -3x-1 = 0 എന്നതുല്യസമത ലഭിക്കുന്നു.

എത്രതന്നെ അജ്ഞാതചരങ്ങൾ ഉണ്ടായാലും, കൃതി ഒന്നായ സമതകളെ‍, രേഖീയസമതകൾ (Linear Equations)എന്നു വിളിക്കുന്നു.



"https://schoolwiki.in/index.php?title=സമവാക്യം_(ഗണിതശാസ്ത്രം)&oldid=394243" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്