"സദിശം (ജ്യാമിതി)" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം
No edit summary |
No edit summary |
||
(മറ്റൊരു ഉപയോക്താവ് ചെയ്ത ഇടയ്ക്കുള്ള ഒരു നാൾപ്പതിപ്പ് പ്രദർശിപ്പിക്കുന്നില്ല) | |||
വരി 1: | വരി 1: | ||
[[Image: | [[Image:350px-Vector_AB_from_A_to_B.svg.png |right|150 pix|thumb|''A'' യിൽ നിന്നും ''B''യിലേക്കുള്ള ഒരു സദിശം.]] | ||
മൗലിക [[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലും]] [[ഭൗതികശാസ്ത്രം|ഭൗതികശാസ്ത്രത്തിലും]] '''സദിശം''' (Vector) എന്നത് പരിമാണവും ദിശയുമുള്ള ഒരു ജ്യാമിതീയവസ്തുവാണ്.ഒരു സദിശത്തെ ദിശയുള്ള രേഖ കൊണ്ട് സൂചിപ്പിക്കുന്നു.ഇതിനു ഒരു ആരംഭബിന്ദുവും അവസാനബിന്ദുവും ഉണ്ടായിരിക്കും.Aആരംഭബിന്ദുവും B അവസാനബിന്ദുവുമായ ഒരു സദിശത്തെ ഇപ്രകാരം സൂചിപ്പിക്കാം. | മൗലിക [[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലും]] [[ഭൗതികശാസ്ത്രം|ഭൗതികശാസ്ത്രത്തിലും]] '''സദിശം''' (Vector) എന്നത് പരിമാണവും ദിശയുമുള്ള ഒരു ജ്യാമിതീയവസ്തുവാണ്.ഒരു സദിശത്തെ ദിശയുള്ള രേഖ കൊണ്ട് സൂചിപ്പിക്കുന്നു.ഇതിനു ഒരു ആരംഭബിന്ദുവും അവസാനബിന്ദുവും ഉണ്ടായിരിക്കും.Aആരംഭബിന്ദുവും B അവസാനബിന്ദുവുമായ ഒരു സദിശത്തെ ഇപ്രകാരം സൂചിപ്പിക്കാം. | ||
:[[Image:342px-Vector_AB_from_A_to_B.svg.png |left|20pix | :[[Image:342px-Vector_AB_from_A_to_B.svg.png|left|20pix]] | ||
സദിശത്തിന്റെ [[പരിമാണം]](Magnitude) രേഖയുടെ നീളമാണ്. | സദിശത്തിന്റെ [[പരിമാണം]](Magnitude) രേഖയുടെ നീളമാണ്. | ||
വാസ്തവികസംഖ്യകളിലെ പല ബീജീയസംക്രിയകളും സദിശങ്ങളിലെ സംക്രിയകളോട് സമാനമാണ്. | വാസ്തവികസംഖ്യകളിലെ പല ബീജീയസംക്രിയകളും സദിശങ്ങളിലെ സംക്രിയകളോട് സമാനമാണ്.സദിശങ്ങൾ കൂട്ടുകയോ കുറക്കുകയോ ഗുണിക്കുകയോ വിപരീതദിശയിലേക്ക് തിരിക്കുകയോ ചെയ്യാം. സംക്രിയകൾ [[ക്രമനിയമം]],[[സാഹചര്യനിയമം]],[[വിതരണനിയമം]] ഇവയെല്ലാം പാലിക്കുന്നു.[[സാമാന്തരികനിയമം]] ഉപയോഗിച്ച് ഒരേ ആരംഭബിന്ദുവുള്ള രണ്ട് സദിശങ്ങളുടെ തുക കണ്ടെത്താവുന്നതാണ്. | ||
ധനസംഖ്യകൊണ്ടുള്ള ഗുണനം അതായത് അദിശം കൊണ്ടുള്ള ഗുണനം | ധനസംഖ്യകൊണ്ടുള്ള ഗുണനം അതായത് അദിശം കൊണ്ടുള്ള ഗുണനം പരിമാണത്തിൽ മാറ്റം വരുത്തുന്നു.ദിശക്ക് മാറ്റം വരാതെ നീളം കൂടുകയോ കുറയുകയോ ചെയ്യാം.ഋണസംഖ്യകൾ കൊണ്ടുള്ള ഗുണനം ദിശക്ക് മാറ്റം വരുത്തുന്നു. | ||
[[ | [[നിർദ്ദേശാങ്ക ജ്യാമിതി]] ഉപയോഗിച്ച് സദിശങ്ങളേയും സംക്രിയകളേയും വിവരിക്കാവുന്നതാണ്. | ||
<!--visbot verified-chils-> |
10:22, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം
മൗലിക ഗണിതശാസ്ത്രത്തിലും ഭൗതികശാസ്ത്രത്തിലും സദിശം (Vector) എന്നത് പരിമാണവും ദിശയുമുള്ള ഒരു ജ്യാമിതീയവസ്തുവാണ്.ഒരു സദിശത്തെ ദിശയുള്ള രേഖ കൊണ്ട് സൂചിപ്പിക്കുന്നു.ഇതിനു ഒരു ആരംഭബിന്ദുവും അവസാനബിന്ദുവും ഉണ്ടായിരിക്കും.Aആരംഭബിന്ദുവും B അവസാനബിന്ദുവുമായ ഒരു സദിശത്തെ ഇപ്രകാരം സൂചിപ്പിക്കാം.
സദിശത്തിന്റെ പരിമാണം(Magnitude) രേഖയുടെ നീളമാണ്.
വാസ്തവികസംഖ്യകളിലെ പല ബീജീയസംക്രിയകളും സദിശങ്ങളിലെ സംക്രിയകളോട് സമാനമാണ്.സദിശങ്ങൾ കൂട്ടുകയോ കുറക്കുകയോ ഗുണിക്കുകയോ വിപരീതദിശയിലേക്ക് തിരിക്കുകയോ ചെയ്യാം. സംക്രിയകൾ ക്രമനിയമം,സാഹചര്യനിയമം,വിതരണനിയമം ഇവയെല്ലാം പാലിക്കുന്നു.സാമാന്തരികനിയമം ഉപയോഗിച്ച് ഒരേ ആരംഭബിന്ദുവുള്ള രണ്ട് സദിശങ്ങളുടെ തുക കണ്ടെത്താവുന്നതാണ്. ധനസംഖ്യകൊണ്ടുള്ള ഗുണനം അതായത് അദിശം കൊണ്ടുള്ള ഗുണനം പരിമാണത്തിൽ മാറ്റം വരുത്തുന്നു.ദിശക്ക് മാറ്റം വരാതെ നീളം കൂടുകയോ കുറയുകയോ ചെയ്യാം.ഋണസംഖ്യകൾ കൊണ്ടുള്ള ഗുണനം ദിശക്ക് മാറ്റം വരുത്തുന്നു.
നിർദ്ദേശാങ്ക ജ്യാമിതി ഉപയോഗിച്ച് സദിശങ്ങളേയും സംക്രിയകളേയും വിവരിക്കാവുന്നതാണ്.