"സമചതുരം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം
(→അവലംബം) |
No edit summary |
||
(മറ്റൊരു ഉപയോക്താവ് ചെയ്ത ഇടയ്ക്കുള്ള ഒരു നാൾപ്പതിപ്പ് പ്രദർശിപ്പിക്കുന്നില്ല) | |||
വരി 1: | വരി 1: | ||
[[യൂക്ലിഡ്| | [[യൂക്ലിഡ്|യൂക്ലീഡിയൻ]] [[ജ്യാമിതി|ജ്യാമിതിയിൽ]] '''സമചതുരം''' എന്നാൽ നാലുവശങ്ങൾ തുല്യമായ ഒരു ക്രമബഹുഭുജമാണ്. ഓരോ കോണും 90 ഡിഗ്രി വീതമാണ്. A,B,C,D ഇവ നാലുവശങ്ങളായ സമചതുരത്തെ ABCD എന്ന് സൂചിപ്പിക്കാം. | ||
== | == വർഗ്ഗീകരണം == | ||
ചതുർഭുജത്തിന്റെ ഒരു പ്രത്യേകവിഭാഗമാണ് സമചതുരം. ഈ രൂപത്തിന് 4 മട്ടകോണുകളും സമാന്തരവും തുല്യവുമായ എതിർവശങ്ങളും ഉണ്ടായിരിക്കും. | |||
== | == സൂത്രവാക്യങ്ങൾ == | ||
നീളം t വശങ്ങളുള്ള ഒരു സമചതുരത്തിന്റെ | നീളം t വശങ്ങളുള്ള ഒരു സമചതുരത്തിന്റെ | ||
*ചുറ്റളവ് 4t.ആണ്.ഇതിനെ P = 4t. ഇപ്രകാരം സൂചിപ്പിക്കാം. | *ചുറ്റളവ് 4t.ആണ്.ഇതിനെ P = 4t. ഇപ്രകാരം സൂചിപ്പിക്കാം. | ||
* | *വിസ്തീർണ്ണം t<sup>2</sup>.അതായത് A = t<sup>2</sup> | ||
ആദ്യകാലങ്ങളിൽ രണ്ടാംകൃതി വിവരിച്ചിരുന്നത് സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തെ ആസ്പദമാക്കിയായിരുന്നു എന്നതിനാലാണ് സമചതുരത്തിന്റെ ആംഗലേയമായ സ്ക്വയർ എന്ന പദം രണ്ടാംകൃതിയേയും സൂചിപ്പിക്കാനുപയോഗിക്കുന്നത്. | |||
== | == സ്വഭാവങ്ങൾ == | ||
*ഓരോ കോണും 90ഡിഗ്രി വീതമുള്ളവയാണ്, അതായത് മട്ടകോണുകളാണ്. | *ഓരോ കോണും 90ഡിഗ്രി വീതമുള്ളവയാണ്, അതായത് മട്ടകോണുകളാണ്. | ||
ഒരു സമചതുരത്തിലെ | ഒരു സമചതുരത്തിലെ വികർണ്ണങ്ങളെല്ലാം തുല്യമാണ്. വിപരീതമായി പറഞ്ഞാൽ ഒരു സമചതുർഭുജത്തിന്റെ വികർണ്ണങ്ങൾ തുല്യമായാൽ അതൊരു സമചതുരമായിരിക്കും. സമചതുരത്തിന്റെ വികർണ്ണം വശത്തിന്റെ നീളത്തിന്റെ '''√2'''മടങ്ങായിരിക്കും. ഈ മൂല്യത്തേയാണ് ''പൈത്തഗോറസ് സ്ഥിരാങ്കം'' എന്ന് പറയുന്നത്. അഭിന്നകം എന്ന് ആദ്യം തെളിയിക്കപ്പെട്ട സംഖ്യയാണിത്. ചതുരവും സമചതുർഭുജവും ചേർന്ന രൂപമാണ് സമചതുരം. | ||
== ചില | |||
== ചില വസ്തുതകൾ കൂടി == | |||
*നാലുവശങ്ങളും തുല്യമായ സമചതുരത്തിന്റെ കോണുകളുടെ തുക 360ഡിഗ്രി ആണ്. | *നാലുവശങ്ങളും തുല്യമായ സമചതുരത്തിന്റെ കോണുകളുടെ തുക 360ഡിഗ്രി ആണ്. | ||
*ഒരു വൃത്തം സമചതുരത്തിനു ചുറ്റും | *ഒരു വൃത്തം സമചതുരത്തിനു ചുറ്റും വരച്ചാൽ (പരിവൃത്തം)വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 2 മടങ്ങാണ്. | ||
*ഒരു | *ഒരു സമചതുരത്തിൽ അന്തര്വൃത്തം വരച്ചാൽ വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 4 മടങ്ങ് ആണ്. | ||
*ഒരേ ചുറ്റളവുള്ള ഏതൊരു | *ഒരേ ചുറ്റളവുള്ള ഏതൊരു ചതുർഭുജത്തിനേക്കാളും വിസ്തീർണ്ണം സമചതുരത്തിന് കൂടുതലാണ്. | ||
==അവലംബം== | ==അവലംബം== | ||
http://mathworld.wolfram.com/Square.html | http://mathworld.wolfram.com/Square.html | ||
[[ | [[വർഗ്ഗം:ഗണിതം]] | ||
[[ | [[വർഗ്ഗം:ജ്യാമിതി]] | ||
<!--visbot verified-chils-> |
10:20, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം
യൂക്ലീഡിയൻ ജ്യാമിതിയിൽ സമചതുരം എന്നാൽ നാലുവശങ്ങൾ തുല്യമായ ഒരു ക്രമബഹുഭുജമാണ്. ഓരോ കോണും 90 ഡിഗ്രി വീതമാണ്. A,B,C,D ഇവ നാലുവശങ്ങളായ സമചതുരത്തെ ABCD എന്ന് സൂചിപ്പിക്കാം.
വർഗ്ഗീകരണം
ചതുർഭുജത്തിന്റെ ഒരു പ്രത്യേകവിഭാഗമാണ് സമചതുരം. ഈ രൂപത്തിന് 4 മട്ടകോണുകളും സമാന്തരവും തുല്യവുമായ എതിർവശങ്ങളും ഉണ്ടായിരിക്കും.
സൂത്രവാക്യങ്ങൾ
നീളം t വശങ്ങളുള്ള ഒരു സമചതുരത്തിന്റെ
- ചുറ്റളവ് 4t.ആണ്.ഇതിനെ P = 4t. ഇപ്രകാരം സൂചിപ്പിക്കാം.
- വിസ്തീർണ്ണം t2.അതായത് A = t2
ആദ്യകാലങ്ങളിൽ രണ്ടാംകൃതി വിവരിച്ചിരുന്നത് സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തെ ആസ്പദമാക്കിയായിരുന്നു എന്നതിനാലാണ് സമചതുരത്തിന്റെ ആംഗലേയമായ സ്ക്വയർ എന്ന പദം രണ്ടാംകൃതിയേയും സൂചിപ്പിക്കാനുപയോഗിക്കുന്നത്.
സ്വഭാവങ്ങൾ
- ഓരോ കോണും 90ഡിഗ്രി വീതമുള്ളവയാണ്, അതായത് മട്ടകോണുകളാണ്.
ഒരു സമചതുരത്തിലെ വികർണ്ണങ്ങളെല്ലാം തുല്യമാണ്. വിപരീതമായി പറഞ്ഞാൽ ഒരു സമചതുർഭുജത്തിന്റെ വികർണ്ണങ്ങൾ തുല്യമായാൽ അതൊരു സമചതുരമായിരിക്കും. സമചതുരത്തിന്റെ വികർണ്ണം വശത്തിന്റെ നീളത്തിന്റെ √2മടങ്ങായിരിക്കും. ഈ മൂല്യത്തേയാണ് പൈത്തഗോറസ് സ്ഥിരാങ്കം എന്ന് പറയുന്നത്. അഭിന്നകം എന്ന് ആദ്യം തെളിയിക്കപ്പെട്ട സംഖ്യയാണിത്. ചതുരവും സമചതുർഭുജവും ചേർന്ന രൂപമാണ് സമചതുരം.
ചില വസ്തുതകൾ കൂടി
- നാലുവശങ്ങളും തുല്യമായ സമചതുരത്തിന്റെ കോണുകളുടെ തുക 360ഡിഗ്രി ആണ്.
- ഒരു വൃത്തം സമചതുരത്തിനു ചുറ്റും വരച്ചാൽ (പരിവൃത്തം)വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 2 മടങ്ങാണ്.
- ഒരു സമചതുരത്തിൽ അന്തര്വൃത്തം വരച്ചാൽ വൃത്തത്തിന്റെ വിസ്തീർണ്ണം സമചതുരത്തിന്റെ വിസ്തീർണ്ണത്തിന്റെ π / 4 മടങ്ങ് ആണ്.
- ഒരേ ചുറ്റളവുള്ള ഏതൊരു ചതുർഭുജത്തിനേക്കാളും വിസ്തീർണ്ണം സമചതുരത്തിന് കൂടുതലാണ്.
അവലംബം
http://mathworld.wolfram.com/Square.html