ഗണം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
10:19, 26 സെപ്റ്റംബർ 2017-നു ഉണ്ടായിരുന്ന രൂപം സൃഷ്ടിച്ചത്:- Visbot (സംവാദം | സംഭാവനകൾ)
(മാറ്റം) ←പഴയ രൂപം | ഇപ്പോഴുള്ള രൂപം (മാറ്റം) | പുതിയ രൂപം→ (മാറ്റം)
പ്രമാണം:Venn A intersect B.svg
രണ്ടു ഗണങ്ങളുടെ സംഗമം സൂചിപ്പിക്കാനുപയോഗിക്കുന്ന വെൻ ഡയഗ്രം

ഗണം എന്നത് ഗണിതശാസ്ത്രത്തിലെ അടിസ്ഥാനആശയങ്ങളിൽ ഒന്നാണ്. ഗണസിദ്ധാന്തം വളരേയേറെ പുരോഗതി പ്രാപിച്ചതും ഗവേഷണത്തിന് വിധേയമായിക്കൊണ്ടിരിക്കുന്നതുമായ ഒരു വിഷയമാണ്. ഗണസിദ്ധാന്തം ആവിഷ്ക്കരിച്ചത് ജോ‌ർജ്ജ് കാന്റർ ആണ്.

നിർവ്വചനം

ജോർജ്ജ് കാന്റർ ആണ് ഗണത്തെ നിർവ്വചിച്ചത്. അദ്ദേഹത്തിന്റെ അഭിപ്രായത്തിൽ "വ്യക്തമായി നിർവ്വചിക്കാൻ കഴിയുന്ന അം‌ഗങ്ങളുടെ കൂട്ടത്തെ ഗണം" എന്ന് പറയുന്നു. ഇതിലെ അംഗങ്ങൾ രാശികളോ വസ്തുക്കളോ ആശയങ്ങളോ ആവാം.

സൂചിപ്പിക്കുന്ന രീതി

ഗണത്തെ ഇംഗ്ലീഷ് അക്ഷരമാലയിലെ വലിയ അക്ഷരങ്ങൾ ഉപയോഗിച്ചാണ് സൂചിപ്പിക്കുന്നത്. ഗണത്തിലെ അംഗങ്ങളെ {} ബ്രാക്കറ്റിനുള്ളിൽ നിർവ്വചിക്കുന്നു. അംഗങ്ങളുടെ വിന്യാസം പ്രധാനമായും 3 രീതിയിലാണ് സൂചിപ്പിക്കുന്നത്.

ചില ഉദാഹരണങ്ങൾ

അംഗത്വം

തന്നിരിക്കുന്ന ഒരു രാശി ഗണത്തിലെ അംഗമാണോ അല്ലയോ എന്ന് സൂചിപ്പിക്കാൻ അഥവാ എന്ന ചിഹ്നമാണ് ഉപയോഗിക്കുന്നത്.



ഗണനസംഖ്യ

ഒരു ഗണത്തിലെ അംഗങ്ങളുടെ എണ്ണത്തെ ആ ഗണത്തിന്റെ ഗണനസംഖ്യ(Cardinality)എന്ന് പറയുന്നു.ഇത് സൂചിപ്പിക്കുന്നത് | | എന്ന ചിഹ്നമുപയോഗിച്ചാണ്.

മുകളിൽ സൂചിപ്പിച്ച ഉദാഹരണത്തിൽ <math>\mathbb{N}</math> എന്ന ഗണത്തിന്റെ ഗണനസംഖ്യ അനന്തമാണ്.A ={1,2,3,4}എന്ന ഗണം പരിഗണിച്ചാൽ |A|=4 ആണെന്ന് കാണാം.

ഉപഗണം

ഒരു ഗണത്തിലെ അംഗങ്ങൾ പൂർണ്ണമായോ ഭാഗികമായോ അംഗങ്ങളായുള്ള ഗണത്തേയാണ് ഉപഗണം(Subset) എന്ന് പറയുന്നത്.ഇതിനെ സൂചിപ്പിക്കുന്നത് <math>\subseteq</math> ഇപ്രകാരമാണ്.

<math>\mathbb{N}</math> എന്ന ഗണം പരിഗണിച്ചാൽ A={2,4,6,8..........} എന്ന ഗണം <math>\mathbb{N}</math>ന്റെ ഉപഗണമാണെന്ന് പറയാം.

അതായത് A<math>\subseteq</math><math>\mathbb{N}</math> ഉം തിരിച്ച് <math>\mathbb{N}</math> എന്ന ഗണം Aയുടെ അധിഗണം(Superset) ആണെന്നും പറയാം.<math>\mathbb{N}</math><math> \supseteq </math>A

ഗണവുമായി ബന്ധപ്പെട്ട ചിഹ്നങ്ങൾ

  • അംഗമാണ് എന്ന് സൂചിപ്പിക്കാൻ.
  • {} അംഗങ്ങളെ വിന്യസിക്കാൻ
  • <math>\subseteq</math> ഉപഗണം
  • സംഗമം
  • യോഗം
  • A' ,Aയുടെ പൂരകഗണം

യോഗം

രണ്ടോ അതിലധികമോ ഗണങ്ങളിലെ എല്ലാ അംഗങ്ങളും ചേർന്ന ഗണം ലഭിക്കുന്നു.ഗണങ്ങളിലെ എല്ലാ അംഗങ്ങളേയും യോജിപ്പിച്ച് ഒരു ഗണത്തിൽ വിന്യസിക്കുന്നു.

രണ്ട് ഗണങ്ങൾ A യുടേയും B യുടേയും യോഗം A ∪ B എന്ന് സൂചിപ്പിക്കുന്നു.ഇതിലെ അംഗങ്ങൾ ഒന്നുകിൽ Aയിലേയോ അല്ലെങ്കിൽ Bയിലേയോ അംഗങ്ങളാവാം.

നിബന്ധനാരീതിയിൽ ഇപ്രകാരം സൂചിപ്പിക്കാം A ∪ B ={x/x∈ A അഥവാ x∈B} ഉദാഹരണങ്ങൾ:

  • {1,3} ∪ {ചുവപ്പ്,വെള്ള}={1,3,ചുവപ്പ്,വെള്ള}
  • {1,3,പച്ച} ∪ {ചുവപ്പ്,വെള്ള,പച്ച} ={1,3,ചുവപ്പ്,വെള്ള,പച്ച}
  • A={1,3,5,.......},B={2,4,6,8..........} എങ്കിൽ A ∪ B={1,2,3,4,5....................} ആയിരിയ്ക്കും.

ചില സവിശേഷതകൾ

സംഗമം

രണ്ടോ അതിലധികമോ ഗണങ്ങളിലെ പൊതുവായുള്ള അംഗങ്ങളുടെ ഗണം സംഗമം എന്ന സംകാരകം വഴി ലഭിക്കുന്നു.രണ്ട് ഗണങ്ങൽ A യുടെയും B യുടേയും സംഗമം A ∩ B ഇപ്രകാരം സൂചിപ്പിക്കുന്നു.ഗണങ്ങളിൽ പൊതുവായ ഒരു അംഗവും ഇല്ലെങ്കിൽ അവയെ വിയുക്തഗണം എന്ന് പറയുന്നു.

നിബന്ധനാരീതിയിൽ ഇപ്രകാരം സൂചിപ്പിക്കാം.A∩B ={x/x∈ A ഉം x∈B} ഉദാഹരണങ്ങൾ:

  • {1,2} ∩ {ചുവപ്പ്,വെള്ള}=ø
  • {1,2,പച്ച} ∩ {ചുവപ്പ്,വെള്ള,പച്ച}={പച്ച}

ചില സവിശേഷതകൾ

  • ക്രമനിയമം അനുസരിക്കുന്നു.A ∩ B = B ∩ A

സാഹചര്യനിയമം അനുസരിക്കുന്നു. A ∩ (B ∩ C) = (A ∩ B) ∩ C

  • A ∩ B ⊆ A
  • വർഗ്ഗസമനിയമം അനുസരിക്കുന്നു, A ∩ A = A
  • ശൂന്യഗണമാണ് തൽസമകം,A ∩ ø = ø

പൂരകഗണം

സമസ്തഗണത്തിലുള്ളതും(Universal Set) തന്നിരിക്കുന്ന ഗണത്തിലില്ലാത്തതുമായ അംഗങ്ങളുടെ ഗണത്തെ പൂരകഗണം എന്ന് പറയുന്നു.Aയുടെ പൂരകഗണത്തെ A' എന്ന് സൂചിപ്പിക്കാം.

നിബന്ധനാരീതിയിൽ ഇപ്രകാരം സൂചിപ്പിക്കാം. A'={x/x∉A }

കാർട്ടീഷ്യൻ ഗുണനഫലം

ക്രമിതജോടി

ഒരു ക്രമിതജോടി എന്നാൽ നിശ്ചിതക്രമം പാലിയ്ക്കുന്ന സംഖ്യകളെ സൂചിപ്പിക്കുക എന്നതാണ്. (a,b) എന്നത് ആദ്യത്തേതും രണ്ടാമത്തേതുമായ സംഖ്യകളെ സൂചിപ്പിക്കുന്നു. a ആദ്യത്തേയും b രണ്ടാമത്തേയും സം‍ഖ്യകളെ സൂചിപ്പിക്കുന്നു. (a,b)=(a',b') എന്നത് a=a' നേയും b=b'നേയും സൂചിപ്പിക്കുന്നു.

ജോടിയും ഗണവും തമ്മിലുള്ള പ്രധാനവ്യത്യാസവും ഇതുതന്നെയാണ്. അതായത് ജോടി ഒരു നിശ്ചിതക്രമം സംഖ്യകളെ വിന്യസിക്കാൻ ഉപയോഗിക്കുന്നു. എന്നാൽ ഗണത്തിൽ ഇത്തരത്തിലൊരു ക്രമം ആവശ്യമില്ല. കൂടാതെ ഗണത്തിൽ {a,a} എന്നത് അർത്ഥശൂന്യമാണ്. എന്നാൽ (a,a) ഒരു അർത്ഥവത്തായ ജോടിയെ സൂചിപ്പിക്കുന്നു.

ഒരു ഗണത്തിലെ അംഗങ്ങളെ മറ്റൊരു ഗണത്തിലെ അംഗങ്ങളുമായി യോജിപ്പിച്ച് പുതിയൊരു ഗണം ഉണ്ടാക്കാൻ കാർട്ടീഷ്യൻ ഗുണനഫലം ഉപയോഗിക്കുന്നു. രണ്ട് ഗണങ്ങൾ Aയുടേയും Bയുടേയും ക്രമിതജോടികളായാണ് രേഖപ്പെടുത്തുന്നത്. A X B ഇപ്രകാരം സൂചിപ്പിക്കുന്നു. നിബന്ധനാരീതിയിൽ ഇപ്രകാരം നിർവ്വചിക്കാം.

A X B= {(x,y)/x∈ A,y∈ B}

Aഎന്ന ഗണത്തിൽ m അംഗങ്ങളും Bഎന്ന ഗണത്തിൽ n അംഗങ്ങളും ഉണ്ടെങ്കിൽ AXB എന്ന ഗണത്തിൽ mXn അംഗങ്ങളുണ്ടായിരിയ്ക്കും.

ഉദാഹരണങ്ങൾ:

  • {1,2} X{ചുവപ്പ്,വെള്ള}={(1,ചുവപ്പ്),(1,വെള്ള),(2,ചുവപ്പ്),(2,വെള്ള)}
  • {1, 2} X {1, 2} = {(1,1), (1,2), (2,1), (2,2)}

ചില സവിശേഷതകൾ

  • A X ∅ = ∅ X A = ∅
  • A X (B ∪ C) = (A X B) ∪ (A X C)
  • (A ∪ B) X C = (A X C) ∪ (B X C)


"https://schoolwiki.in/index.php?title=ഗണം&oldid=394215" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്