"ദ്വിപദം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
No edit summary
No edit summary
 
വരി 1: വരി 1:
മൗലിക ബീജഗണിതത്തില്‍ '''ദ്വിപദം''' (binomial) എന്നാല്‍ രണ്ട് പദങ്ങളുള്ള ഒരു ബഹുപദമാണ്. അതായത് രണ്ട് ഏകപദങ്ങളുടെ തുകയാണ് ദ്വിപദം. ഏകപദത്തെ ഒഴിച്ചാല്‍ ഏറ്റവും ലളിതമായ ബഹുപദമാണിത്. ഒരു ദ്വിപദത്തെ രണ്ട് ഏകപദങ്ങളുടെ ഗുണനഫലമായി ഘടകങ്ങളാക്കാം.
മൗലിക ബീജഗണിതത്തിൽ '''ദ്വിപദം''' (binomial) എന്നാൽ രണ്ട് പദങ്ങളുള്ള ഒരു ബഹുപദമാണ്. അതായത് രണ്ട് ഏകപദങ്ങളുടെ തുകയാണ് ദ്വിപദം. ഏകപദത്തെ ഒഴിച്ചാൽ ഏറ്റവും ലളിതമായ ബഹുപദമാണിത്. ഒരു ദ്വിപദത്തെ രണ്ട് ഏകപദങ്ങളുടെ ഗുണനഫലമായി ഘടകങ്ങളാക്കാം.
ഉദാഹരണത്തിന് a<sup>2</sup> − b<sup>2</sup> = (a + b)(a − b).
ഉദാഹരണത്തിന് a<sup>2</sup> − b<sup>2</sup> = (a + b)(a − b).


(ax + b),(cx + d) ഒരു ജോടി രേഖീയ ഏകപദങ്ങളുടെ ഗുണനഫലം (ax + b)(cx + d) = acx2 + (ad + bc)x + bd ആണ്.nആം കൃതിയിലുള്ള ദ്വിപദത്തെ സാമാന്യമായി (a + b)<sup>n</sup> എന്ന് സൂചിപ്പിയ്ക്കാം.ഇത് വിപുലീകരിക്കുന്നത് [[ദ്വിപദപ്രമേയം|ദ്വിപദപ്രമേയമോ]] [[പാസ്കലിന്റെ ത്രീകോണം|പാസ്കലിന്റെ ത്രികോണമോ]] ഉപയോഗിച്ചാണ്.
(ax + b),(cx + d) ഒരു ജോടി രേഖീയ ഏകപദങ്ങളുടെ ഗുണനഫലം (ax + b)(cx + d) = acx2 + (ad + bc)x + bd ആണ്.nആം കൃതിയിലുള്ള ദ്വിപദത്തെ സാമാന്യമായി (a + b)<sup>n</sup> എന്ന് സൂചിപ്പിയ്ക്കാം.ഇത് വിപുലീകരിക്കുന്നത് [[ദ്വിപദപ്രമേയം|ദ്വിപദപ്രമേയമോ]] [[പാസ്കലിന്റെ ത്രീകോണം|പാസ്കലിന്റെ ത്രികോണമോ]] ഉപയോഗിച്ചാണ്.
{{ബീജഗണിതം-അപൂര്‍ണ്ണം|Binomial}}
{{ബീജഗണിതം-അപൂർണ്ണം|Binomial}}


[[വര്‍ഗ്ഗം:ഗണിതം]]
[[വർഗ്ഗം:ഗണിതം]]
 
<!--visbot  verified-chils->

10:21, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം

മൗലിക ബീജഗണിതത്തിൽ ദ്വിപദം (binomial) എന്നാൽ രണ്ട് പദങ്ങളുള്ള ഒരു ബഹുപദമാണ്. അതായത് രണ്ട് ഏകപദങ്ങളുടെ തുകയാണ് ദ്വിപദം. ഏകപദത്തെ ഒഴിച്ചാൽ ഏറ്റവും ലളിതമായ ബഹുപദമാണിത്. ഒരു ദ്വിപദത്തെ രണ്ട് ഏകപദങ്ങളുടെ ഗുണനഫലമായി ഘടകങ്ങളാക്കാം. ഉദാഹരണത്തിന് a2 − b2 = (a + b)(a − b).

(ax + b),(cx + d) ഒരു ജോടി രേഖീയ ഏകപദങ്ങളുടെ ഗുണനഫലം (ax + b)(cx + d) = acx2 + (ad + bc)x + bd ആണ്.nആം കൃതിയിലുള്ള ദ്വിപദത്തെ സാമാന്യമായി (a + b)n എന്ന് സൂചിപ്പിയ്ക്കാം.ഇത് വിപുലീകരിക്കുന്നത് ദ്വിപദപ്രമേയമോ പാസ്കലിന്റെ ത്രികോണമോ ഉപയോഗിച്ചാണ്.


"https://schoolwiki.in/index.php?title=ദ്വിപദം&oldid=394235" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്