"പൈത്തഗോറസ് സിദ്ധാന്തം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം

Schoolwiki സംരംഭത്തിൽ നിന്ന്
No edit summary
No edit summary
 
(മറ്റൊരു ഉപയോക്താവ് ചെയ്ത ഇടയ്ക്കുള്ള ഒരു നാൾപ്പതിപ്പ് പ്രദർശിപ്പിക്കുന്നില്ല)
വരി 1: വരി 1:
[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലെ]] [[യൂക്ലിഡിയന്‍ ജ്യാമിതി|യൂക്ലിഡിയന്‍ ജ്യാമിതിയില്‍]]  ഒരു [[സമഭുജ ത്രികോണം|സമഭുജ ത്രികോണത്തിന്റെ]] മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങള്‍ വിശദീകരിക്കാന്‍ ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ്‌ '''പൈത്തഗോറസ് സിദ്ധാന്തം'''. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത [[ഗ്രീക്ക്]] [[ഗണിതശാസ്ത്രജ്ഞന്‍|ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന്]] [[പൈത്തഗോറസ്|പൈത്തഗോറസിന്റെ]]  പേരിലാണ്‌ ഇത് അറിയപ്പെടുന്നത്. <ref>Heath, Vol I, p. 144.</ref>
[[ഗണിതശാസ്ത്രം|ഗണിതശാസ്ത്രത്തിലെ]] [[യൂക്ലിഡിയൻ ജ്യാമിതി|യൂക്ലിഡിയൻ ജ്യാമിതിയിൽ]]  ഒരു [[സമഭുജ ത്രികോണം|സമഭുജ ത്രികോണത്തിന്റെ]] മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങൾ വിശദീകരിക്കാൻ ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ്‌ '''പൈത്തഗോറസ് സിദ്ധാന്തം'''. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത [[ഗ്രീക്ക്]] [[ഗണിതശാസ്ത്രജ്ഞൻ|ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന്]] [[പൈത്തഗോറസ്|പൈത്തഗോറസിന്റെ]]  പേരിലാണ്‌ ഇത് അറിയപ്പെടുന്നത്.
[[ചിത്രം:Pythagorean.svg|thumb|'''The Pythagorean theorem''': The sum of the areas of the two squares on the legs (''a'' and ''b'') equals the area of the square on the hypotenuse (''c'').]]
ഈ സിദ്ധാന്തം പറയുന്നതിങ്ങനെയാണ്‌:
ഈ സിദ്ധാന്തം പറയുന്നതിങ്ങനെയാണ്‌:
<blockquote>ഒരു [[മട്ടത്രികോണം|മട്ടത്രികോണത്തിലെ]] [[കര്‍ണ്ണം|കര്‍ണ്ണത്തിന്റെ]] വര്‍ഗ്ഗം അതിന്റെ പാദത്തിന്റെയും, ലംബത്തിന്റെയും വര്‍ഗ്ഗത്തിന്റെ തുകക്കു തുല്യമായിരിക്കും
<blockquote>ഒരു [[മട്ടത്രികോണം|മട്ടത്രികോണത്തിലെ]] [[കർണ്ണം|കർണ്ണത്തിന്റെ]] വർഗ്ഗം അതിന്റെ പാദത്തിന്റെയും, ലംബത്തിന്റെയും വർഗ്ഗത്തിന്റെ തുകക്കു തുല്യമായിരിക്കും
 
<!--visbot  verified-chils->

10:21, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം

ഗണിതശാസ്ത്രത്തിലെ യൂക്ലിഡിയൻ ജ്യാമിതിയിൽ ഒരു സമഭുജ ത്രികോണത്തിന്റെ മൂന്ന് വശങ്ങളുടെയും ബന്ധങ്ങൾ വിശദീകരിക്കാൻ ഉപയോഗിക്കുന്ന ഒരു സിദ്ധാന്തമാണ്‌ പൈത്തഗോറസ് സിദ്ധാന്തം. ഇത് കണ്ടുപിടിക്കുകയും തെളിയിക്കുകയും ചെയ്ത ഗ്രീക്ക് ഗണിതശാസ്ത്രജ്ഞനായിരുന്ന് പൈത്തഗോറസിന്റെ പേരിലാണ്‌ ഇത് അറിയപ്പെടുന്നത്. ഈ സിദ്ധാന്തം പറയുന്നതിങ്ങനെയാണ്‌:

ഒരു മട്ടത്രികോണത്തിലെ കർണ്ണത്തിന്റെ വർഗ്ഗം അതിന്റെ പാദത്തിന്റെയും, ലംബത്തിന്റെയും വർഗ്ഗത്തിന്റെ തുകക്കു തുല്യമായിരിക്കും


"https://schoolwiki.in/index.php?title=പൈത്തഗോറസ്_സിദ്ധാന്തം&oldid=394233" എന്ന താളിൽനിന്ന് ശേഖരിച്ചത്