"അവാസ്തവികസംഖ്യ" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം
No edit summary |
No edit summary |
||
വരി 1: | വരി 1: | ||
[[ഋണസംഖ്യ|ഋണസംഖ്യയുടെ]] | [[ഋണസംഖ്യ|ഋണസംഖ്യയുടെ]] വർഗ്ഗമൂലത്തേയാണ് '''അവാസ്തവികസംഖ്യ''' (Imaginary number) എന്നതുകൊണ്ടുദ്ദേശിക്കുന്നത്. [[മിശ്രസംഖ്യ|സമ്മിശ്രസംഖ്യ]]യിൽ '''i''' ഗുണോത്തരമായി ചേർന്ന സംഖ്യയാണ്. ഇതൊരു സമ്മിശ്രസംഖ്യയാണ്. ഈ സംഖ്യയുടെ വർഗ്ഗം പൂജ്യത്തേക്കാൾ ചെറുതായിരിക്കും. അവാസ്തവികസംഖ്യകളെ നിർവ്വചിച്ചത് 1572ൽ [[റാഫേൽ ബോംബെല്ലി]] ആണ്. ആദ്യകാലങ്ങളിൽ ''ദെക്കാർത്തേ സമ്മിശ്രസംഖ്യകൾ'' എന്ന രീതിയിലാണ് അവാസ്തവികസംഖ്യകളെ സൂചിപ്പിച്ചത്. എന്നാൽ ഇന്ന് സമ്മിശ്രസംഖ്യയിലെ രേഖീയസംഖ്യാഭാഗം പൂജ്യം ആയ സംഖ്യയെ സൂചിപ്പിക്കാനാണ് ഉപയോഗിക്കുന്നത്. '''0''' ആണ് [[രേഖീയസംഖ്യ|രേഖീയസംഖ്യയും]] അതേസമയം അവാസ്തവികസംഖ്യയും ആയ ഒരേ ഒരു സംഖ്യ. | ||
== ജ്യാമിതീയ വ്യാഖ്യാനം == | == ജ്യാമിതീയ വ്യാഖ്യാനം == | ||
[[Image:249px-Complex_conjugate_picture.svg.png |right|thumb|സമ്മിശ്രതലത്തിന്റെ ഒരു ചിത്രീകരണം. | [[Image:249px-Complex_conjugate_picture.svg.png|right|thumb|സമ്മിശ്രതലത്തിന്റെ ഒരു ചിത്രീകരണം. അവാസ്തവികസംഖ്യകൾ ലംബനിർദ്ദേശാങ്ക അക്ഷത്തിലാണ് രേഖപ്പെടുത്തുന്നത്.]] | ||
സമ്മിശ്രസംഖ്യാതലത്തിന്റെ ലംബ അക്ഷത്തിലാണ് | സമ്മിശ്രസംഖ്യാതലത്തിന്റെ ലംബ അക്ഷത്തിലാണ് അവാസ്തവികസംഖ്യകൾ രേഖപ്പെടുത്തുന്നത്. രേഖീയാക്ഷത്തിന് ലംബമായിരിക്കും.വലത്തോട്ടുപോകുന്തോറും ധനവില കൂടുകയും ഇടത്തോട്ട് പോകുന്തോറും ഋണവില കൂടുകയും ചെയ്യുന്ന ഒരു പ്രമാണസംഖ്യാരേഖയിൽ ഇവയെ അടയാളപ്പെടുത്താം. 0 ൽ X അക്ഷത്തിൽ വരയ്ക്കാവുന്ന Y അക്ഷത്തിന്റെ മുകളിലേക്ക് അവാസ്തവികസംഖ്യകളുടെ വില കൂടുന്നതായും താഴേക്ക് വില കുറയുന്നതായും രേഖപ്പെടുത്തുന്നു. ലംബരേഖയേയാണ് [[അവാസ്തവിക അക്ഷം]] എന്ന് പറയുന്നത്. ഇത്തരത്തിലുള്ള സൂചിപ്പിക്കലിൽ -1 കൊണ്ടുള്ള ഗുണനം അക്ഷത്തിലുള്ള 180 ഡിഗ്രീ കറക്കമാണ്. i കൊണ്ടുള്ള ഗുണനം 90 ഡിഗ്രീ കറക്കവും. i <sup>2</sup>=-1 എന്ന സമവാക്യം രണ്ട് തവണ 90 ഡിഗ്രീ കറക്കം പ്രയോഗിക്കുന്നു എന്നതിനെ സൂചിപ്പിക്കുന്നു.ഇത് 180 ഡിഗ്രീ കറക്കത്തിനു തുല്യമാണ്. ഋണദിശയിലും അതായത് ഘടികാരദിശയിലും ഇത് ശരിയാണ്. ആയതിനാൽ −i ഉംx2 = − 1 എന്ന സമവാക്യം പാലിക്കുന്നു. | ||
== | == പ്രയോഗങ്ങൾ == | ||
അവാസ്തവികസംഖ്യകൾ പ്രയോഗിക്കുന്നത് പ്രധാനമായും സിഗ്നൽ പ്രോസസിംഗ്, കൺട്രോൾ സിദ്ധാന്തം, വിദ്യുത്കാന്തികം, ക്വാണ്ടം ബലതന്ത്രം, കാർട്ടോഗ്രഫി എന്നീ മേഖലകളിലാണ്. ഇലക്ട്രികൽ എൻജിനീയറിംഗിൽ ഒരു ബാറ്ററി ഉണ്ടാക്കുന്ന വോൾട്ടേജ് [[ആയതി]] എന്ന രേഖീയ സംഖ്യ ഉപയോഗിച്ചാണ് വിവരിക്കുന്നത്. എന്നാൽ AC വോൾട്ടേജ് | |||
ആയതി, ഫേസ് എന്നീ 2 അളവുകളുപയോഗിച്ചാണ് വിവരിക്കുന്നത്. | ആയതി, ഫേസ് എന്നീ 2 അളവുകളുപയോഗിച്ചാണ് വിവരിക്കുന്നത്. വോൾട്ടേജിന് 2 വിമകളുണ്ട്. 2 വിമകളുള്ള ഒരു തലത്തെ ഗണിതീയമായി വെക്റ്റർ ഉപയോഗിച്ചോ സമ്മിശ്രസംഖ്യയുപയോഗിച്ചോ സൂചിപ്പിക്കാം. വെക്റ്റർ അവതരണത്തിൽ X,Y എന്നീ സമകോണീയ നിർദ്ദേശാങ്കങ്ങളാണ് ഉപയോഗിക്കുന്നത്. എന്നാൽ സമ്മിശ്രസംഖ്യകളായി സൂചിപ്പിക്കുമ്പോൾ രേഖീയസംഖ്യാഭഅഗവും അവാസ്തവികസംഖ്യാഭാഗവും ഉണ്ടായിരിക്കും. സമ്മിശ്രസംഖ്യ, ശുദ്ധഅവാസ്തവികസംഖ്യയാണെങ്കിൽ അവാസ്തവികസംഖ്യാഭാഗം ആയതിയെ സൂചിപ്പിക്കുന്നു. കൂടാതെ ഫേസ് 90° ആയിരിക്കും. | ||
== ചരിത്രം == | == ചരിത്രം == | ||
ദെക്കർത്തേയാണ് ആദ്യമായി അവാസ്തവികം എന്ന ആശയം 1637ൽ അവതരിപ്പിച്ചത്. അവാസ്തവികസംഖ്യകൾ ഇതിനുമുൻപുതന്നെ 1500കളിൽ ഗെറോലാമോ കാർഡേനോ അവതരിപ്പിച്ചിരുന്നു. എന്നാൽ ഇവ സ്വീകരിക്കപ്പെട്ടുതുടങ്ങിയത് ലിയോനാർഡ് ഓയ്ലർ (1707–1783), കാൾ ഫ്രെഡറിക് ഗോസ് (1777–1855) എന്നിവർക്ക് ശേഷമാണ്. | |||
<!--visbot verified-chils-> |
10:20, 26 സെപ്റ്റംബർ 2017-നു നിലവിലുള്ള രൂപം
ഋണസംഖ്യയുടെ വർഗ്ഗമൂലത്തേയാണ് അവാസ്തവികസംഖ്യ (Imaginary number) എന്നതുകൊണ്ടുദ്ദേശിക്കുന്നത്. സമ്മിശ്രസംഖ്യയിൽ i ഗുണോത്തരമായി ചേർന്ന സംഖ്യയാണ്. ഇതൊരു സമ്മിശ്രസംഖ്യയാണ്. ഈ സംഖ്യയുടെ വർഗ്ഗം പൂജ്യത്തേക്കാൾ ചെറുതായിരിക്കും. അവാസ്തവികസംഖ്യകളെ നിർവ്വചിച്ചത് 1572ൽ റാഫേൽ ബോംബെല്ലി ആണ്. ആദ്യകാലങ്ങളിൽ ദെക്കാർത്തേ സമ്മിശ്രസംഖ്യകൾ എന്ന രീതിയിലാണ് അവാസ്തവികസംഖ്യകളെ സൂചിപ്പിച്ചത്. എന്നാൽ ഇന്ന് സമ്മിശ്രസംഖ്യയിലെ രേഖീയസംഖ്യാഭാഗം പൂജ്യം ആയ സംഖ്യയെ സൂചിപ്പിക്കാനാണ് ഉപയോഗിക്കുന്നത്. 0 ആണ് രേഖീയസംഖ്യയും അതേസമയം അവാസ്തവികസംഖ്യയും ആയ ഒരേ ഒരു സംഖ്യ.
ജ്യാമിതീയ വ്യാഖ്യാനം
സമ്മിശ്രസംഖ്യാതലത്തിന്റെ ലംബ അക്ഷത്തിലാണ് അവാസ്തവികസംഖ്യകൾ രേഖപ്പെടുത്തുന്നത്. രേഖീയാക്ഷത്തിന് ലംബമായിരിക്കും.വലത്തോട്ടുപോകുന്തോറും ധനവില കൂടുകയും ഇടത്തോട്ട് പോകുന്തോറും ഋണവില കൂടുകയും ചെയ്യുന്ന ഒരു പ്രമാണസംഖ്യാരേഖയിൽ ഇവയെ അടയാളപ്പെടുത്താം. 0 ൽ X അക്ഷത്തിൽ വരയ്ക്കാവുന്ന Y അക്ഷത്തിന്റെ മുകളിലേക്ക് അവാസ്തവികസംഖ്യകളുടെ വില കൂടുന്നതായും താഴേക്ക് വില കുറയുന്നതായും രേഖപ്പെടുത്തുന്നു. ലംബരേഖയേയാണ് അവാസ്തവിക അക്ഷം എന്ന് പറയുന്നത്. ഇത്തരത്തിലുള്ള സൂചിപ്പിക്കലിൽ -1 കൊണ്ടുള്ള ഗുണനം അക്ഷത്തിലുള്ള 180 ഡിഗ്രീ കറക്കമാണ്. i കൊണ്ടുള്ള ഗുണനം 90 ഡിഗ്രീ കറക്കവും. i 2=-1 എന്ന സമവാക്യം രണ്ട് തവണ 90 ഡിഗ്രീ കറക്കം പ്രയോഗിക്കുന്നു എന്നതിനെ സൂചിപ്പിക്കുന്നു.ഇത് 180 ഡിഗ്രീ കറക്കത്തിനു തുല്യമാണ്. ഋണദിശയിലും അതായത് ഘടികാരദിശയിലും ഇത് ശരിയാണ്. ആയതിനാൽ −i ഉംx2 = − 1 എന്ന സമവാക്യം പാലിക്കുന്നു.
പ്രയോഗങ്ങൾ
അവാസ്തവികസംഖ്യകൾ പ്രയോഗിക്കുന്നത് പ്രധാനമായും സിഗ്നൽ പ്രോസസിംഗ്, കൺട്രോൾ സിദ്ധാന്തം, വിദ്യുത്കാന്തികം, ക്വാണ്ടം ബലതന്ത്രം, കാർട്ടോഗ്രഫി എന്നീ മേഖലകളിലാണ്. ഇലക്ട്രികൽ എൻജിനീയറിംഗിൽ ഒരു ബാറ്ററി ഉണ്ടാക്കുന്ന വോൾട്ടേജ് ആയതി എന്ന രേഖീയ സംഖ്യ ഉപയോഗിച്ചാണ് വിവരിക്കുന്നത്. എന്നാൽ AC വോൾട്ടേജ് ആയതി, ഫേസ് എന്നീ 2 അളവുകളുപയോഗിച്ചാണ് വിവരിക്കുന്നത്. വോൾട്ടേജിന് 2 വിമകളുണ്ട്. 2 വിമകളുള്ള ഒരു തലത്തെ ഗണിതീയമായി വെക്റ്റർ ഉപയോഗിച്ചോ സമ്മിശ്രസംഖ്യയുപയോഗിച്ചോ സൂചിപ്പിക്കാം. വെക്റ്റർ അവതരണത്തിൽ X,Y എന്നീ സമകോണീയ നിർദ്ദേശാങ്കങ്ങളാണ് ഉപയോഗിക്കുന്നത്. എന്നാൽ സമ്മിശ്രസംഖ്യകളായി സൂചിപ്പിക്കുമ്പോൾ രേഖീയസംഖ്യാഭഅഗവും അവാസ്തവികസംഖ്യാഭാഗവും ഉണ്ടായിരിക്കും. സമ്മിശ്രസംഖ്യ, ശുദ്ധഅവാസ്തവികസംഖ്യയാണെങ്കിൽ അവാസ്തവികസംഖ്യാഭാഗം ആയതിയെ സൂചിപ്പിക്കുന്നു. കൂടാതെ ഫേസ് 90° ആയിരിക്കും.
ചരിത്രം
ദെക്കർത്തേയാണ് ആദ്യമായി അവാസ്തവികം എന്ന ആശയം 1637ൽ അവതരിപ്പിച്ചത്. അവാസ്തവികസംഖ്യകൾ ഇതിനുമുൻപുതന്നെ 1500കളിൽ ഗെറോലാമോ കാർഡേനോ അവതരിപ്പിച്ചിരുന്നു. എന്നാൽ ഇവ സ്വീകരിക്കപ്പെട്ടുതുടങ്ങിയത് ലിയോനാർഡ് ഓയ്ലർ (1707–1783), കാൾ ഫ്രെഡറിക് ഗോസ് (1777–1855) എന്നിവർക്ക് ശേഷമാണ്.