"സമഭുജ ത്രികോണം" എന്ന താളിന്റെ പതിപ്പുകൾ തമ്മിലുള്ള വ്യത്യാസം
No edit summary |
No edit summary |
||
വരി 2: | വരി 2: | ||
മൂന്നു [[വശം|വശങ്ങളും]] മൂന്നു [[കോണ്|കോണളവുകളും]] തുല്യമായ [[ത്രികോണം|ത്രികോണങ്ങളാണ്]] '''സമഭുജ ത്രികോണങ്ങള്'''. ആയതിനാല് ഓരോ [[കോണളവ്|കോണളവും]] 60 ഡിഗ്രീ വീതമായിരിയ്ക്കും. | മൂന്നു [[വശം|വശങ്ങളും]] മൂന്നു [[കോണ്|കോണളവുകളും]] തുല്യമായ [[ത്രികോണം|ത്രികോണങ്ങളാണ്]] '''സമഭുജ ത്രികോണങ്ങള്'''. ആയതിനാല് ഓരോ [[കോണളവ്|കോണളവും]] 60 ഡിഗ്രീ വീതമായിരിയ്ക്കും. | ||
ഒരു [[വശം]] a യും [[ലംബശീര്ഷം]] h ഉം തന്നിരുന്നാല് സമഭുജത്രികോണത്തിന്റെ [[വിസ്തീര്ണ്ണം]] കാണുന്നതിന് [[Image:Snapshot1.png]] എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിയ്ക്കുന്നു. | ഒരു [[വശം]]'' a'' യും [[ലംബശീര്ഷം]] ''h'' ഉം തന്നിരുന്നാല് സമഭുജത്രികോണത്തിന്റെ [[വിസ്തീര്ണ്ണം]] കാണുന്നതിന് [[Image:Snapshot1.png]] എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിയ്ക്കുന്നു. | ||
a വശമായുള്ള സമഭുജത്രികോണം ആധാരമാക്കി വരയ്ക്കുന്ന: | ''a'' വശമായുള്ള സമഭുജത്രികോണം ആധാരമാക്കി വരയ്ക്കുന്ന: | ||
* <math>r\,</math> [[ആരം|ആരമായുള്ള]] [[അന്തര്വൃത്തം|അന്തര്വൃത്തത്തിന്റെ]] [[വിസ്തീര്ണ്ണം]] <math>\pi r^2\,</math> അഥവാ <math>\frac{1}{12} \pi a^2\,</math> എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിച്ചും | * <math>r\,</math> [[ആരം|ആരമായുള്ള]] [[അന്തര്വൃത്തം|അന്തര്വൃത്തത്തിന്റെ]] [[വിസ്തീര്ണ്ണം]] <math>\pi r^2\,</math> അഥവാ <math>\frac{1}{12} \pi a^2\,</math> എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിച്ചും | ||
* <math>R\,</math> ആരമായുള്ള [[പരിവൃത്തം|പരിവൃത്തത്തിന്റെ]] [[വിസ്തീര്ണ്ണം]] <math>\pi R^2\,</math> അഥവാ <math>\frac{1}{3} \pi a^2</math> എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിച്ചും കണ്ടെത്താം. | * <math>R\,</math> ആരമായുള്ള [[പരിവൃത്തം|പരിവൃത്തത്തിന്റെ]] [[വിസ്തീര്ണ്ണം]] <math>\pi R^2\,</math> അഥവാ <math>\frac{1}{3} \pi a^2</math> എന്ന [[സൂത്രവാക്യം]] ഉപയോഗിച്ചും കണ്ടെത്താം. |
22:13, 27 ഒക്ടോബർ 2009-നു നിലവിലുണ്ടായിരുന്ന രൂപം
മൂന്നു വശങ്ങളും മൂന്നു കോണളവുകളും തുല്യമായ ത്രികോണങ്ങളാണ് സമഭുജ ത്രികോണങ്ങള്. ആയതിനാല് ഓരോ കോണളവും 60 ഡിഗ്രീ വീതമായിരിയ്ക്കും.
ഒരു വശം a യും ലംബശീര്ഷം h ഉം തന്നിരുന്നാല് സമഭുജത്രികോണത്തിന്റെ വിസ്തീര്ണ്ണം കാണുന്നതിന് എന്ന സൂത്രവാക്യം ഉപയോഗിയ്ക്കുന്നു.
a വശമായുള്ള സമഭുജത്രികോണം ആധാരമാക്കി വരയ്ക്കുന്ന:
- <math>r\,</math> ആരമായുള്ള അന്തര്വൃത്തത്തിന്റെ വിസ്തീര്ണ്ണം <math>\pi r^2\,</math> അഥവാ <math>\frac{1}{12} \pi a^2\,</math> എന്ന സൂത്രവാക്യം ഉപയോഗിച്ചും
- <math>R\,</math> ആരമായുള്ള പരിവൃത്തത്തിന്റെ വിസ്തീര്ണ്ണം <math>\pi R^2\,</math> അഥവാ <math>\frac{1}{3} \pi a^2</math> എന്ന സൂത്രവാക്യം ഉപയോഗിച്ചും കണ്ടെത്താം.
നിര്മ്മിതി
ആരമായുള്ള ഒരു വൃത്തം നിര്മിയ്ക്കുക. ഇതേ ആരത്തില് തന്നെ കോംപസ്സുപയോഗിച്ച് വേറൊരു വൃത്തം നിര്മ്മിച്ച്, വൃത്തകേന്ദ്രങ്ങളേയും വൃത്തങ്ങള് തമ്മില് സന്ധിയ്ക്കുന്ന ബിന്ദുക്കളേയും യോജിപ്പിച്ചാല് സമഭുജത്രികോണം ലഭിയ്ക്കും.